File size: 13,461 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from random import shuffle
import os
from glob import glob
import shutil
import re
import tqdm
from multiprocessing import Pool
from normalise import normalise
months = {'jan.': 'January', 'feb.': 'February', 'mar.': 'March', 'apr.': 'April', 'may': 'May', 'jun.': 'June', 'jul.': 'July', 'aug.': 'August', 'sep.': 'September', 'oct.': 'October', 'nov.': 'November', 'dec.': 'December', 'jan': 'January', 'feb': 'February', 'mar': 'March', 'apr': 'April', 'jun': 'June', 'jul': 'July', 'aug': 'August', 'sep': 'September', 'oct': 'October', 'nov': 'November', 'dec': 'December'}
replace_words = {'&': 'and', '¡':'', 'r&b':'R and B', 'funtime':'fun time', 'español':'espanol', "'s":'s', 'palylist':'playlist'}
replace_vocab = {'ú':'u', 'ñ':'n', 'Ō':'O', 'â':'a'}
reservations = {'chyi':'chyi', 'Pre-Party':'pre party', 'Chu':'Chu', 'B&B':'B and B', '0944':'nine four four', 'Box':'Box', 'ain’t':'am not', 'Zon':'Zon', 'Yui':'Yui', 'neto':'neto', 'skepta':'skepta', '¡Fiesta':'Fiesta', 'Vue':'Vue', 'iheart':'iheart', 'disco':'disco'}
same = "klose la mejor música para tus fiestas dubstep dangles drejer listas".split(' ')
for word in same:
reservations[word] = word
def word_normalise(words):
ret = []
for word in words:
if word.lower() in months:
word = months[word.lower()]
if word.lower() in replace_words:
word = replace_words[word.lower()]
for regex in replace_vocab:
word = re.sub(regex, '', word)
#word = re.sub(r'(\S)([\.\,\!\?])', r'\1 \2', word)
word = re.sub(r'[\.\,\!\?;\/]', '', word)
ret.append(word)
return ret
def sent_normalise(text, slots_split=None):
norm_slots, norm_texts = [], []
text_split = text.split(' ')
if slots_split is None:
slots_split = ['O']*len(text_split)
for idx in range(len(text_split)):
if text_split[idx] in '.,!?;/]':
continue
if text_split[idx] in reservations:
for word in reservations[text_split[idx]].split(' '):
norm_texts.append(word)
norm_slots.append(slots_split[idx])
continue
norm_text = normalise(word_normalise([text_split[idx]]), variety="AmE", verbose=False)
for phrase in norm_text:
if phrase == '':
continue
for word in re.split(r' |\-', phrase):
word = re.sub(r'[\.\,\!\?;\/]', '', word)
if word == '':
continue
norm_texts.append(word)
norm_slots.append(slots_split[idx])
return norm_slots, norm_texts
def process_raw_snips_file(file, out_f):
with open(file) as f:
content = f.readlines()
content = [x.strip() for x in content]
with open(out_f, 'w') as f:
for cnt, line in enumerate(content):
text = line.split(' <=> ')[0]
intent = line.split(' <=> ')[1]
#[r.split(':')[0] if len(r.split(':')) == 2 else ' ' for r in x.split()]
text_split = [x.replace('::', ':').split(':')[0] if len(x.replace('::', ':').split(':')) == 2 else ' ' for x in text.split()]
text_entities = ' '.join(text_split)
slots_split = [x.replace('::', ':').split(':')[1] for x in text.split()]
slots_entities = ' '.join(slots_split)
assert len(text_split) == len(slots_split), (text_split, slots_split)
f.write('%d | BOS %s EOS | O %s | %s\n' % (cnt, text_entities, slots_entities, intent))
def remove_IBO_from_snipt_vocab_slot(in_f, out_f):
with open(in_f) as f:
content = f.readlines()
content = [x.strip() for x in content]
# get rid of BIO tag from the slots
for idx, line in enumerate(content):
if line != 'O':
content[idx] = line[len('B-'):]
content = set(content) # remove repeating slots
with open(out_f, 'w') as f:
for line in content:
f.write('%s\n' % line)
def process_daniel_snips_file(content):
content = [x.strip() for x in content]
utt_ids = [x.split('\t', 1)[0] for x in content]
valid_uttids = [x for x in utt_ids if x.split('-')[1] == 'valid']
test_uttids = [x for x in utt_ids if x.split('-')[1] == 'test']
train_uttids = [x for x in utt_ids if x.split('-')[1] == 'train']
utt2text, utt2slots, utt2intent = {}, {}, {}
assert len(utt_ids) == len(set(utt_ids))
# create utt2text, utt2slots, utt2intent
for line in content:
uttid, text, slots, intent = line.split('\t')
if len(text.split()) != len(slots.split()): # detect 'empty' in text
assert len(text.split(' ')) == 2
empty_idx = text.split().index(text.split(' ')[0].split()[-1]) + 1
slots_list = slots.split()
del slots_list[empty_idx]
cleaned_slots = ' '.join(slots_list)
assert len(text.split()) == len(slots_list)
cleaned_text = ' '.join(text.split())
#print(cleaned_text, cleaned_slots)
else:
(cleaned_text, cleaned_slots) = (text, slots)
# get rid of the 'intent/' from all slot values
cleaned_slots = ' '.join([x.split('/')[1] if x != 'O' else x for x in cleaned_slots.split()])
# strip the whitespaces before punctuations
#cleaned_text = re.sub(r'\s([?.!,"](?:\s|$))', r'\1', cleaned_text)
utt2text[uttid] = cleaned_text
utt2slots[uttid] = cleaned_slots
utt2intent[uttid] = intent
test_utt2text, test_utt2slots, test_utt2intent = {}, {}, {}
valid_utt2text, valid_utt2slots, valid_utt2intent = {}, {}, {}
train_utt2text, train_utt2slots, train_utt2intent = {}, {}, {}
for utt in valid_uttids:
valid_utt2text[utt] = utt2text[utt]
valid_utt2slots[utt] = utt2slots[utt]
valid_utt2intent[utt] = utt2intent[utt]
for utt in test_uttids:
test_utt2text[utt] = utt2text[utt]
test_utt2slots[utt] = utt2slots[utt]
test_utt2intent[utt] = utt2intent[utt]
for utt in train_uttids:
train_utt2text[utt] = utt2text[utt]
train_utt2slots[utt] = utt2slots[utt]
train_utt2intent[utt] = utt2intent[utt]
assert len(set(valid_utt2intent.values())) == len(set(test_utt2intent.values())) == len(set(train_utt2intent.values())) == 7
assert len(valid_utt2intent.keys()) == len(test_utt2intent.keys()) == 700
assert len(train_utt2intent.keys()) == 13084
def __return_set_of_slots(utt2slots):
all_slots = []
for slot in utt2slots.values():
all_slots.extend(slot.split())
unique_slots = set(all_slots)
return unique_slots
assert len(__return_set_of_slots(valid_utt2slots)) == len(__return_set_of_slots(test_utt2slots)) == \
len(__return_set_of_slots(train_utt2slots)) == 40
return (train_utt2text, train_utt2slots, train_utt2intent), \
(valid_utt2text, valid_utt2slots, valid_utt2intent), \
(test_utt2text, test_utt2slots, test_utt2intent)
def map_and_link_snips_audio(snips_audio_dir, link_dir):
# traverse through snips_audio_dir
result = [y for x in os.walk(snips_audio_dir) for y in glob(os.path.join(x[0], '*.mp3'))]
for path in result:
person = path.split('/')[8].split('_')[1]
filename = path.split('/')[-1]
if filename[:5] != 'snips':
continue
uttid = filename.split('.')[0]
new_uttid = person + '-' + filename
partition = uttid.split('-')[1]
destination = os.path.join(link_dir, partition, new_uttid)
shutil.copyfile(path, destination)
def create_multispk_for_snips(output_dir):
speakers = "Aditi Amy Brian Emma Geraint Ivy Joanna Joey Justin Kendra Kimberly Matthew Nicole Raveena Russell Salli".split(' ')
dataset_info = [{'split':'test', 'num_utts':700}, {'split':'valid', 'num_utts':700}, {'split':'train', 'num_utts':13084}]
test_out_f = open(os.path.join(output_dir, 'all.iob.snips.txt'), 'w')
for data in dataset_info:
num_utts = data['num_utts']
split = data['split']
with open(os.path.join(output_dir, 'single-matched-snips.%s.w-intent'%split)) as f:
content = f.readlines()
utt2line = {x.strip().split()[0]:x.strip() for x in content}
for spk in speakers:
for num in range(num_utts):
uttid = "%s-snips-%s-%d"%(spk, split, num) #mp3.split('/')[-1].split('.')[0]
line = utt2line["snips-%s-%d"%(split, num)] #'-'.join(uttid.split('-')[1:])]
text = line.split('\t')[1].upper()
slots = line.split('\t')[2]
intent = line.split('\t')[3]
test_out_f.write('%s BOS %s EOS\tO %s %s\n' % (uttid, text, slots, intent))
test_out_f.close()
def apply_text_norm_and_modify_slots(all_tsv, output_dir):
train_dirs, valid_dirs, test_dirs = process_daniel_snips_file(all_tsv)
# test
test_file = open(os.path.join(output_dir, 'single-matched-snips.test.w-intent'), 'w')
vocab_slot = {}
for uttid in tqdm.tqdm(test_dirs[0].keys(), desc='Text Normalising on testing set'):
text = test_dirs[0][uttid]
slots = test_dirs[1][uttid]
intent = test_dirs[2][uttid]
slots_split = slots.split()
for s in slots_split:
vocab_slot.setdefault(s, 0)
vocab_slot[s] += 1
norm_slots, norm_texts = sent_normalise(text, slots_split)
assert len(norm_texts) == len(norm_slots), (norm_texts, norm_slots)
# write to file
test_file.write('%s\t%s\t%s\t%s\n' % (uttid, ' '.join(norm_texts).upper(), ' '.join(norm_slots), intent))
test_file.close()
# valid
valid_file = open(os.path.join(output_dir, 'single-matched-snips.valid.w-intent'), 'w')
for uttid in tqdm.tqdm(valid_dirs[0].keys(), desc='Text Normalising on validation set'):
text = valid_dirs[0][uttid]
slots = valid_dirs[1][uttid]
intent = valid_dirs[2][uttid]
slots_split = slots.split()
for s in slots_split:
vocab_slot.setdefault(s, 0)
vocab_slot[s] += 1
norm_slots, norm_texts = sent_normalise(text, slots_split)
assert len(norm_texts) == len(norm_slots), (norm_texts, norm_slots)
# write to file
valid_file.write('%s\t%s\t%s\t%s\n' % (uttid, ' '.join(norm_texts).upper(), ' '.join(norm_slots), intent))
valid_file.close()
# train
train_file = open(os.path.join(output_dir, 'single-matched-snips.train.w-intent'), 'w')
for uttid in tqdm.tqdm(train_dirs[0].keys(), desc='Text Normalising on training set'):
text = train_dirs[0][uttid]
slots = train_dirs[1][uttid]
intent = train_dirs[2][uttid]
slots_split = slots.split()
for s in slots_split:
vocab_slot.setdefault(s, 0)
vocab_slot[s] += 1
norm_slots, norm_texts = sent_normalise(text, slots_split)
assert len(norm_texts) == len(norm_slots), (norm_texts, norm_slots)
# write to file
train_file.write('%s\t%s\t%s\t%s\n' % (uttid, ' '.join(norm_texts).upper(), ' '.join(norm_slots), intent))
train_file.close()
vocab_file = open(os.path.join(output_dir, 'slots.txt'), 'w')
vocab_file.write('\n'.join(sorted(list(vocab_slot.keys()), key=lambda x:vocab_slot[x], reverse=True)))
def sox_func(inputs):
files, root, out_root, speaker = inputs
for name in tqdm.tqdm(files, desc='Process for speaker: '+speaker):
if name.endswith(".mp3"):
split = name.split('-')[1]
out_dir = os.path.join(out_root, split)
os.makedirs(out_dir, exist_ok=True)
orig_file = os.path.join(root, name)
new_file = os.path.join(out_dir, speaker+'-'+name.split('/')[-1].split('.')[0] + '.wav')
bashCommand = "sox " + orig_file + " -t wav -c 1 -r 16000 -b 16 -e signed-integer " + new_file
r = os.popen(bashCommand).read()
def sox_mp3_to_wav(in_root, out_root):
os.makedirs(out_root, exist_ok=True)
pool = Pool(16)
inputs = []
for root, dirs, files in os.walk(in_root):
print('[Processing] enter directory %s'%root)
if not len(files):
continue
speaker = root.split('/')[-2].split('_')[1]
print('[Processing] process %d audio files from speaker %s'%(len(files), speaker))
inputs.append((files, root, out_root, speaker))
pool.map(sox_func, inputs)
if __name__ == '__main__':
import sys, os
mode = sys.argv[1]
if mode == 'text':
repo_dir = sys.argv[2]
dump_dir = sys.argv[3]
os.makedirs(dump_dir, exist_ok=True)
content = []
content += open(os.path.join(repo_dir, 'data/nlu_annotation/valid')).readlines()[1:]
content += open(os.path.join(repo_dir, 'data/nlu_annotation/test')).readlines()[1:]
content += open(os.path.join(repo_dir, 'data/nlu_annotation/train')).readlines()[1:]
apply_text_norm_and_modify_slots(content, dump_dir)
create_multispk_for_snips(dump_dir)
elif mode == 'audio':
audio_dir = sys.argv[2]
dump_dir = sys.argv[3]
# Step: sox the snips *.mp3 to the correct format
sox_mp3_to_wav(audio_dir, dump_dir)
else:
print('Usage: python preprocess.py [text|audio] [data_path] [dump_path]')
|