File size: 17,052 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
"""
The setting of Superb ASV
Authors
* Po-Han Chi 2021
* Leo 2021
* Haibin Wu 2022
* Leo 2022
"""
import logging
import pickle
from dataclasses import dataclass
from pathlib import Path
import pandas as pd
from omegaconf import MISSING
from torch.utils.data import Subset
from s3prl.dataio.corpus.voxceleb1sv import VoxCeleb1SV
from s3prl.dataio.dataset import EncodeCategory, LoadAudio, get_info
from s3prl.dataio.encoder.category import CategoryEncoder
from s3prl.dataio.sampler import FixedBatchSizeBatchSampler
from s3prl.nn.speaker_model import SuperbXvector
from .run import ASV
SAMPLE_RATE = 16000
EFFECTS = [
["channels", "1"],
["rate", "16000"],
["gain", "-3.0"],
["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"],
]
logger = logging.getLogger(__name__)
__all__ = [
"prepare_voxceleb1_for_sv",
"SuperbASV",
]
def prepare_voxceleb1_for_sv(
target_dir: str,
cache_dir: str,
get_path_only: str,
dataset_root: str,
force_download: bool = False,
):
"""
Prepare VoxCeleb1 for speaker verification
following :obj:`SuperbASV.prepare_data` format.
Args:
dataset_root (str): The root path of Fluent Speech Command
force_download (bool): always re-download the metadata for VoxCeleb1
"""
train_path = target_dir / "train.csv"
test_trial_path = target_dir / "test_trial.csv"
if get_path_only:
return train_path, [test_trial_path]
corpus = VoxCeleb1SV(dataset_root, cache_dir, force_download)
train_data, valid_data, test_data, test_trials = corpus.all_data
all_data = {**train_data, **valid_data}
ids = sorted(all_data.keys())
wav_paths = [all_data[idx]["wav_path"] for idx in ids]
labels = [all_data[idx]["label"] for idx in ids]
pd.DataFrame({"id": ids, "wav_path": wav_paths, "spk": labels}).to_csv(
train_path, index=False
)
labels, id1s, id2s = zip(*test_trials)
wav_path1 = [test_data[idx]["wav_path"] for idx in id1s]
wav_path2 = [test_data[idx]["wav_path"] for idx in id2s]
pd.DataFrame(
{
"id1": id1s,
"id2": id2s,
"wav_path1": wav_path1,
"wav_path2": wav_path2,
"label": labels,
}
).to_csv(test_trial_path, index=False)
return train_path, [test_trial_path]
class SuperbASV(ASV):
def default_config(self):
return dict(
target_dir=MISSING,
cache_dir=None,
test_ckpt_steps=None, # eval all saved checkpoints
prepare_data=dict(
dataset_root=MISSING,
),
build_dataset=dict(
train=dict(
min_secs=2.0,
max_secs=8.0,
),
),
build_batch_sampler=dict(
train=dict(
batch_size=10,
shuffle=True,
),
test=dict(
batch_size=1,
),
),
build_upstream=dict(
name=MISSING,
),
build_featurizer=dict(
layer_selections=None,
normalize=False,
),
build_model=dict(
upstream_trainable=False,
),
build_task=dict(
loss_type="amsoftmax",
loss_conf=dict(
margin=0.4,
scale=30,
),
),
build_optimizer=dict(
name="AdamW",
conf=dict(
lr=1.0e-4,
),
),
build_scheduler=dict(
name="ExponentialLR",
gamma=0.9,
),
train=dict(
total_steps=200000,
log_step=500,
eval_step=1e20,
save_step=10000,
gradient_clipping=1.0e3,
gradient_accumulate=5,
valid_metric=None,
valid_higher_better=None,
auto_resume=True,
resume_ckpt_dir=None,
keep_num_ckpts=None,
),
)
def prepare_data(
self, prepare_data: dict, target_dir: str, cache_dir: str, get_path_only: bool
):
"""
Prepare the task-specific data metadata (path, labels...).
By default call :obj:`prepare_voxceleb1_for_sv` with :code:`**prepare_data`
Args:
prepare_data (dict): same in :obj:`default_config`,
support arguments in :obj:`prepare_voxceleb1_for_sv`
target_dir (str): Parse your corpus and save the csv file into this directory
cache_dir (str): If the parsing or preprocessing takes too long time, you can save
the temporary files into this directory. This directory is expected to be shared
across different training sessions (different hypers and :code:`target_dir`)
get_path_only (bool): Directly return the filepaths no matter they exist or not.
Returns:
tuple
1. train_path (str)
2. test_trial_paths (List[str])
The :code:`train_path` should be a csv file containing the following columns:
==================== ====================
column description
==================== ====================
id (str) - the unique id for this utterance
wav_path (str) - the absolute path of the waveform file
spk (str) - a string speaker label
==================== ====================
Each :code:`test_trial_path` should be a csv file containing the following columns:
==================== ====================
column description
==================== ====================
id1 (str) - the unique id of the first utterance
id2 (str) - the unique id of the second utterance
wav_path1 (str) - the absolute path of the first utterance
wav_path2 (str) - the absolute path of the second utterance
label (int) - 0 when two utterances are from different speakers, \
1 when same speaker
==================== ====================
"""
return prepare_voxceleb1_for_sv(
**self._get_current_arguments(flatten_dict="prepare_data")
)
def build_encoder(
self,
build_encoder: dict,
target_dir: str,
cache_dir: str,
train_csv: str,
test_csvs: list,
get_path_only: bool,
):
"""
Build the encoder (for the labels) given the data metadata, and return the saved encoder path.
By default generate and save a :obj:`s3prl.dataio.encoder.CategoryEncoder` from the :code:`label` column of the train csv.
Args:
build_encoder (dict): same in :obj:`default_config`, no argument supported for now
target_dir (str): Save your encoder into this directory
cache_dir (str): If the preprocessing takes too long time, you can save
the temporary files into this directory. This directory is expected to be shared
across different training sessions (different hypers and :code:`target_dir`)
train_csv_path (str): the train path from :obj:`prepare_data`
valid_csv_path (str): the valid path from :obj:`prepare_data`
test_csv_paths (List[str]): the test paths from :obj:`prepare_data`
get_path_only (bool): Directly return the filepaths no matter they exist or not
Returns:
str
encoder_path: The encoder should be saved in the pickle format
"""
encoder_path = Path(target_dir) / "spk2int.pkl"
if get_path_only:
return encoder_path
csv = pd.read_csv(train_csv)
all_spk = sorted(set(csv["spk"]))
spk2int = CategoryEncoder(all_spk)
with open(encoder_path, "wb") as f:
pickle.dump(spk2int, f)
return encoder_path
def build_dataset(
self,
build_dataset: dict,
target_dir: str,
cache_dir: str,
mode: str,
data_csv: str,
encoder_path: str,
):
"""
Build the dataset for train/valid/test.
Args:
build_dataset (dict): same in :obj:`default_config`, have
:code:`train` and :code:`test` keys, each is a dictionary, for :code:`train` dictionary:
==================== ====================
key description
==================== ====================
min_secs (float) - Drop a waveform if it is not longer than :code:`min_secs`
max_secs (float) - If a waveform is longer than :code:`max_secs` seconds, \
randomly crop the waveform into :code:`max_secs` seconds. \
Default: None, no cropping
==================== ====================
for :code:`test` dictionary, no argument supported yet
target_dir (str): Current experiment directory
cache_dir (str): If the preprocessing takes too long time, you can save
the temporary files into this directory. This directory is expected to be shared
across different training sessions (different hypers and :code:`target_dir`)
mode (str): train/valid/test
data_csv (str): The metadata csv file for the specific :code:`mode`
encoder_path (str): The pickled encoder path for encoding the labels
Returns:
torch Dataset
For train mode, the dataset should return each item as a dictionary
containing the following keys:
==================== ====================
key description
==================== ====================
x (torch.FloatTensor) - the waveform in (seq_len, 1)
x_len (int) - the waveform length :code:`seq_len`
class_id (str) - the label class id encoded by :code:`encoder_path`
unique_name (str) - the unique id for this datapoint
==================== ====================
For test mode:
==================== ====================
key description
==================== ====================
x (torch.FloatTensor) - the waveform in (seq_len, 1)
x_len (int) - the waveform length :code:`seq_len`
unique_name (str) - the unique id for this datapoint
"""
assert mode in [
"train",
"test",
], "Only support train & test mode (no validation)"
if mode == "train":
@dataclass
class Config:
min_secs: float = None
max_secs: float = None
conf = build_dataset.get("train", {})
conf = Config(**conf)
csv = pd.read_csv(data_csv)
wav_paths = csv["wav_path"].tolist()
audio_loader = LoadAudio(
wav_paths, sox_effects=EFFECTS, max_secs=conf.max_secs
)
labels = csv["spk"].tolist()
with open(encoder_path, "rb") as f:
encoder = pickle.load(f)
label_encoder = EncodeCategory(labels, encoder)
ids = csv["id"].tolist()
class SVTrainDataset:
def __len__(self):
return len(audio_loader)
def __getitem__(self, index: int):
audio = audio_loader[index]
label = label_encoder[index]
return {
"x": audio["wav"],
"x_len": audio["wav_len"],
"class_id": label["class_id"],
"unique_name": ids[index],
}
dataset = SVTrainDataset()
if conf.min_secs is not None:
x_lens, unique_names = get_info(
dataset,
["x_len", "unique_name"],
target_dir / "train_utt_len",
)
indices = []
removed_indices = []
for idx, (x_len, unique_name) in enumerate(zip(x_lens, unique_names)):
secs = x_len / SAMPLE_RATE
if secs <= conf.min_secs:
logger.info(
f"Remove utt {unique_name} since too short after sox effects: {secs} secs"
)
removed_indices.append(idx)
else:
indices.append(idx)
if len(removed_indices) > 0:
logger.info(f"Remove in total {len(removed_indices)} utts")
dataset = Subset(dataset, indices)
elif mode == "test":
csv = pd.read_csv(data_csv)
ids = pd.concat([csv["id1"], csv["id2"]], ignore_index=True).tolist()
wav_paths = pd.concat(
[csv["wav_path1"], csv["wav_path2"]], ignore_index=True
).tolist()
data_list = sorted(set([(idx, path) for idx, path in zip(ids, wav_paths)]))
ids, wav_paths = zip(*data_list)
audio_loader = LoadAudio(wav_paths)
class SVTestDataset:
def __len__(self):
return len(audio_loader)
def __getitem__(self, index: int):
audio = audio_loader[index]
return {
"x": audio["wav"],
"x_len": audio["wav_len"],
"unique_name": ids[index],
}
dataset = SVTestDataset()
return dataset
def build_batch_sampler(
self,
build_batch_sampler: dict,
target_dir: str,
cache_dir: str,
mode: str,
data_csv: str,
dataset,
):
"""
Return the batch sampler for torch DataLoader.
Args:
build_batch_sampler (dict): same in :obj:`default_config`
==================== ====================
key description
==================== ====================
train (dict) - arguments for :obj:`FixedBatchSizeBatchSampler`
test (dict) - arguments for :obj:`FixedBatchSizeBatchSampler`
==================== ====================
Note that ASV does not support valid
target_dir (str): Current experiment directory
cache_dir (str): If the preprocessing takes too long time, save
the temporary files into this directory. This directory is expected to be shared
across different training sessions (different hypers and :code:`target_dir`)
mode (str): train/valid/test
data_csv (str): the :code:`mode` specific csv from :obj:`prepare_data`
dataset: the dataset from :obj:`build_dataset`
Returns:
batch sampler for torch DataLoader
"""
train = build_batch_sampler.get("train", {})
test = build_batch_sampler.get("test", {})
if mode == "train":
return FixedBatchSizeBatchSampler(dataset, **train)
elif mode == "test":
return FixedBatchSizeBatchSampler(dataset, **test)
else:
raise ValueError("ASV only supports train/test modes")
def build_downstream(
self,
build_downstream: dict,
downstream_input_size: int,
downstream_output_size: int,
downstream_input_stride: int,
):
"""
Return the task-specific downstream model.
By default build the :obj:`SuperbXvector` model
Args:
build_downstream (dict): same in :obj:`default_config`, support arguments of :obj:`SuperbXvector`
downstream_input_size (int): the required input size of the model
downstream_output_size (int): the required output size of the model
downstream_input_stride (int): the input feature's stride (from 16 KHz)
Returns:
:obj:`s3prl.nn.interface.AbsUtteranceModel`
"""
model = SuperbXvector(downstream_input_size, **build_downstream)
return model
|