File size: 7,765 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import json
import logging
import pickle
from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass
from pathlib import Path

import pandas as pd
import torch
import torchaudio
from omegaconf import MISSING

from s3prl.dataio.dataset import FrameLabelDataset, get_info
from s3prl.dataio.sampler import FixedBatchSizeBatchSampler, GroupSameItemSampler
from s3prl.task.event_prediction import EventPredictionTask

from ._hear_util import resample_hear_corpus
from .hear_fsd import HearFSD

logger = logging.getLogger(__name__)

__all__ = [
    "HearDcase2016Task2",
]


def dcase_2016_task2(
    target_dir: str,
    cache_dir: str,
    dataset_root: str,
    get_path_only: bool = False,
):
    target_dir: Path = Path(target_dir)
    train_csv = target_dir / "train.csv"
    valid_csv = target_dir / "valid.csv"
    test_csv = target_dir / "test.csv"

    if get_path_only:
        return train_csv, valid_csv, [test_csv]

    resample_hear_corpus(dataset_root, target_sr=16000)

    dataset_root = Path(dataset_root)
    wav_root: Path = dataset_root / "16000"

    def json_to_csv(json_path: str, csv_path: str, split: str):
        with open(json_path) as fp:
            metadata = json.load(fp)

        data = defaultdict(list)
        for utt in metadata:
            wav_path: Path = (wav_root / split / utt).resolve()
            assert wav_path.is_file()
            info = torchaudio.info(wav_path)
            baseinfo = {
                "record_id": utt,
                "wav_path": str(wav_path),
                "duration": info.num_frames / info.sample_rate,
            }
            for segment in metadata[utt]:
                fullinfo = deepcopy(baseinfo)
                fullinfo[
                    "utt_id"
                ] = f"{baseinfo['record_id']}-{int(segment['start'])}-{int(segment['end'])}"
                fullinfo["labels"] = segment["label"]
                fullinfo["start_sec"] = segment["start"] / 1000
                fullinfo["end_sec"] = segment["end"] / 1000

                for key, value in fullinfo.items():
                    data[key].append(value)

        pd.DataFrame(data=data).to_csv(csv_path, index=False)

    json_to_csv(dataset_root / "train.json", train_csv, "train")
    json_to_csv(dataset_root / "valid.json", valid_csv, "valid")
    json_to_csv(dataset_root / "test.json", test_csv, "test")

    return train_csv, valid_csv, [test_csv]


class HearDcase2016Task2(HearFSD):
    def default_config(self) -> dict:
        return dict(
            start=0,
            stop=None,
            target_dir=MISSING,
            cache_dir=None,
            remove_all_cache=False,
            prepare_data=dict(
                dataset_root=MISSING,
            ),
            build_dataset=dict(
                train=dict(
                    chunk_secs=4.0,
                    step_secs=4.0,
                ),
                valid=dict(
                    chunk_secs=4.0,
                    step_secs=4.0,
                ),
                test=dict(
                    chunk_secs=4.0,
                    step_secs=4.0,
                ),
            ),
            build_batch_sampler=dict(
                train=dict(
                    batch_size=5,
                    shuffle=True,
                ),
            ),
            build_upstream=dict(
                name=MISSING,
            ),
            build_featurizer=dict(
                layer_selections=None,
                normalize=False,
            ),
            build_downstream=dict(
                hidden_layers=2,
            ),
            build_model=dict(
                upstream_trainable=False,
            ),
            build_task=dict(
                prediction_type="multilabel",
                scores=["event_onset_200ms_fms", "segment_1s_er"],
                postprocessing_grid={
                    "median_filter_ms": [250],
                    "min_duration": [125, 250],
                },
            ),
            build_optimizer=dict(
                name="Adam",
                conf=dict(
                    lr=1.0e-3,
                ),
            ),
            build_scheduler=dict(
                name="ExponentialLR",
                gamma=0.9,
            ),
            save_model=dict(),
            save_task=dict(),
            train=dict(
                total_steps=15000,
                log_step=100,
                eval_step=500,
                save_step=500,
                gradient_clipping=1.0,
                gradient_accumulate=1,
                valid_metric="event_onset_200ms_fms",
                valid_higher_better=True,
                auto_resume=True,
                resume_ckpt_dir=None,
            ),
            evaluate=dict(),
        )

    def prepare_data(
        self,
        prepare_data: dict,
        target_dir: str,
        cache_dir: str,
        get_path_only: bool = False,
    ):
        return dcase_2016_task2(
            **self._get_current_arguments(flatten_dict="prepare_data")
        )

    def build_dataset(
        self,
        build_dataset: dict,
        target_dir: str,
        cache_dir: str,
        mode: str,
        data_csv: str,
        encoder_path: str,
        frame_shift: int,
    ):
        @dataclass
        class Config:
            train: dict = None
            valid: dict = None
            test: dict = None

        conf = Config(**build_dataset)
        conf = getattr(conf, mode)
        conf = conf or {}

        with open(encoder_path, "rb") as f:
            encoder = pickle.load(f)

        df = pd.read_csv(data_csv)
        df["label"] = [encoder.encode(label) for label in df["labels"].tolist()]

        dataset = FrameLabelDataset(df, len(encoder), frame_shift, **conf)
        return dataset

    def build_batch_sampler(
        self,
        build_batch_sampler: dict,
        target_dir: str,
        cache_dir: str,
        mode: str,
        data_csv: str,
        dataset,
    ):
        @dataclass
        class Config:
            train: dict = None
            valid: dict = None
            test: dict = None

        conf = Config(**build_batch_sampler)
        if mode == "train":
            return FixedBatchSizeBatchSampler(dataset, **(conf.train or {}))
        elif mode == "valid":
            record_ids = get_info(dataset, ["record_id"], target_dir / "valid_stats")
            return GroupSameItemSampler(record_ids)
        elif mode == "test":
            record_ids = get_info(dataset, ["record_id"], target_dir / "test_stats")
            return GroupSameItemSampler(record_ids)
        else:
            raise ValueError(f"Unsupported mode: {mode}")

    def build_task(
        self,
        build_task: dict,
        model: torch.nn.Module,
        encoder,
        valid_df: pd.DataFrame = None,
        test_df: pd.DataFrame = None,
    ):
        def df_to_events(df: pd.DataFrame):
            data = {}
            for rowid, row in df.iterrows():
                record_id = row["record_id"]
                if not record_id in data:
                    data[record_id] = []
                data[record_id].append(
                    {
                        "start": row["start_sec"] * 1000,
                        "end": row["end_sec"] * 1000,
                        "label": row["labels"],
                    }
                )
            return data

        valid_events = None if valid_df is None else df_to_events(valid_df)
        test_events = None if test_df is None else df_to_events(test_df)

        return EventPredictionTask(
            model,
            encoder,
            valid_target_events=valid_events,
            test_target_events=test_events,
            **build_task,
        )