File size: 7,765 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import json
import logging
import pickle
from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass
from pathlib import Path
import pandas as pd
import torch
import torchaudio
from omegaconf import MISSING
from s3prl.dataio.dataset import FrameLabelDataset, get_info
from s3prl.dataio.sampler import FixedBatchSizeBatchSampler, GroupSameItemSampler
from s3prl.task.event_prediction import EventPredictionTask
from ._hear_util import resample_hear_corpus
from .hear_fsd import HearFSD
logger = logging.getLogger(__name__)
__all__ = [
"HearDcase2016Task2",
]
def dcase_2016_task2(
target_dir: str,
cache_dir: str,
dataset_root: str,
get_path_only: bool = False,
):
target_dir: Path = Path(target_dir)
train_csv = target_dir / "train.csv"
valid_csv = target_dir / "valid.csv"
test_csv = target_dir / "test.csv"
if get_path_only:
return train_csv, valid_csv, [test_csv]
resample_hear_corpus(dataset_root, target_sr=16000)
dataset_root = Path(dataset_root)
wav_root: Path = dataset_root / "16000"
def json_to_csv(json_path: str, csv_path: str, split: str):
with open(json_path) as fp:
metadata = json.load(fp)
data = defaultdict(list)
for utt in metadata:
wav_path: Path = (wav_root / split / utt).resolve()
assert wav_path.is_file()
info = torchaudio.info(wav_path)
baseinfo = {
"record_id": utt,
"wav_path": str(wav_path),
"duration": info.num_frames / info.sample_rate,
}
for segment in metadata[utt]:
fullinfo = deepcopy(baseinfo)
fullinfo[
"utt_id"
] = f"{baseinfo['record_id']}-{int(segment['start'])}-{int(segment['end'])}"
fullinfo["labels"] = segment["label"]
fullinfo["start_sec"] = segment["start"] / 1000
fullinfo["end_sec"] = segment["end"] / 1000
for key, value in fullinfo.items():
data[key].append(value)
pd.DataFrame(data=data).to_csv(csv_path, index=False)
json_to_csv(dataset_root / "train.json", train_csv, "train")
json_to_csv(dataset_root / "valid.json", valid_csv, "valid")
json_to_csv(dataset_root / "test.json", test_csv, "test")
return train_csv, valid_csv, [test_csv]
class HearDcase2016Task2(HearFSD):
def default_config(self) -> dict:
return dict(
start=0,
stop=None,
target_dir=MISSING,
cache_dir=None,
remove_all_cache=False,
prepare_data=dict(
dataset_root=MISSING,
),
build_dataset=dict(
train=dict(
chunk_secs=4.0,
step_secs=4.0,
),
valid=dict(
chunk_secs=4.0,
step_secs=4.0,
),
test=dict(
chunk_secs=4.0,
step_secs=4.0,
),
),
build_batch_sampler=dict(
train=dict(
batch_size=5,
shuffle=True,
),
),
build_upstream=dict(
name=MISSING,
),
build_featurizer=dict(
layer_selections=None,
normalize=False,
),
build_downstream=dict(
hidden_layers=2,
),
build_model=dict(
upstream_trainable=False,
),
build_task=dict(
prediction_type="multilabel",
scores=["event_onset_200ms_fms", "segment_1s_er"],
postprocessing_grid={
"median_filter_ms": [250],
"min_duration": [125, 250],
},
),
build_optimizer=dict(
name="Adam",
conf=dict(
lr=1.0e-3,
),
),
build_scheduler=dict(
name="ExponentialLR",
gamma=0.9,
),
save_model=dict(),
save_task=dict(),
train=dict(
total_steps=15000,
log_step=100,
eval_step=500,
save_step=500,
gradient_clipping=1.0,
gradient_accumulate=1,
valid_metric="event_onset_200ms_fms",
valid_higher_better=True,
auto_resume=True,
resume_ckpt_dir=None,
),
evaluate=dict(),
)
def prepare_data(
self,
prepare_data: dict,
target_dir: str,
cache_dir: str,
get_path_only: bool = False,
):
return dcase_2016_task2(
**self._get_current_arguments(flatten_dict="prepare_data")
)
def build_dataset(
self,
build_dataset: dict,
target_dir: str,
cache_dir: str,
mode: str,
data_csv: str,
encoder_path: str,
frame_shift: int,
):
@dataclass
class Config:
train: dict = None
valid: dict = None
test: dict = None
conf = Config(**build_dataset)
conf = getattr(conf, mode)
conf = conf or {}
with open(encoder_path, "rb") as f:
encoder = pickle.load(f)
df = pd.read_csv(data_csv)
df["label"] = [encoder.encode(label) for label in df["labels"].tolist()]
dataset = FrameLabelDataset(df, len(encoder), frame_shift, **conf)
return dataset
def build_batch_sampler(
self,
build_batch_sampler: dict,
target_dir: str,
cache_dir: str,
mode: str,
data_csv: str,
dataset,
):
@dataclass
class Config:
train: dict = None
valid: dict = None
test: dict = None
conf = Config(**build_batch_sampler)
if mode == "train":
return FixedBatchSizeBatchSampler(dataset, **(conf.train or {}))
elif mode == "valid":
record_ids = get_info(dataset, ["record_id"], target_dir / "valid_stats")
return GroupSameItemSampler(record_ids)
elif mode == "test":
record_ids = get_info(dataset, ["record_id"], target_dir / "test_stats")
return GroupSameItemSampler(record_ids)
else:
raise ValueError(f"Unsupported mode: {mode}")
def build_task(
self,
build_task: dict,
model: torch.nn.Module,
encoder,
valid_df: pd.DataFrame = None,
test_df: pd.DataFrame = None,
):
def df_to_events(df: pd.DataFrame):
data = {}
for rowid, row in df.iterrows():
record_id = row["record_id"]
if not record_id in data:
data[record_id] = []
data[record_id].append(
{
"start": row["start_sec"] * 1000,
"end": row["end_sec"] * 1000,
"label": row["labels"],
}
)
return data
valid_events = None if valid_df is None else df_to_events(valid_df)
test_events = None if test_df is None else df_to_events(test_df)
return EventPredictionTask(
model,
encoder,
valid_target_events=valid_events,
test_target_events=test_events,
**build_task,
)
|