File size: 13,188 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""
The backbone run procedure for the common train/valid/test

Authors
  * Leo 2022
"""

import logging
import pickle
import shutil
from pathlib import Path

import pandas as pd
import torch
import yaml

from s3prl.problem.base import Problem
from s3prl.task.utterance_classification_task import UtteranceClassificationTask

logger = logging.getLogger(__name__)

__all__ = ["Common"]


class Common(Problem):
    def run(
        self,
        target_dir: str,
        cache_dir: str = None,
        remove_all_cache: bool = False,
        start: int = 0,
        stop: int = None,
        num_workers: int = 6,
        eval_batch: int = -1,
        device: str = "cuda",
        world_size: int = 1,
        rank: int = 0,
        test_ckpt_dir: str = None,
        prepare_data: dict = None,
        build_encoder: dict = None,
        build_dataset: dict = None,
        build_batch_sampler: dict = None,
        build_collate_fn: dict = None,
        build_upstream: dict = None,
        build_featurizer: dict = None,
        build_downstream: dict = None,
        build_model: dict = None,
        build_task: dict = None,
        build_optimizer: dict = None,
        build_scheduler: dict = None,
        save_model: dict = None,
        save_task: dict = None,
        train: dict = None,
        evaluate: dict = None,
    ):
        """
        ========  ====================
        stage     description
        ========  ====================
        0         Parse the corpus and save the metadata file (waveform path, label...)
        1         Build the encoder to encode the labels
        2         Train the model
        3         Evaluate the model on multiple test sets
        ========  ====================

        Args:
            target_dir (str):
                The directory that stores the script result.
            cache_dir (str):
                The directory that caches the processed data.
                Default: /home/user/.cache/s3prl/data
            remove_all_cache (bool):
                Whether to remove all the cache stored under `cache_dir`.
                Default: False
            start (int):
                The starting stage of the problem script.
                Default: 0
            stop (int):
                The stoping stage of the problem script, set `None` to reach the final stage.
                Default: None
            num_workers (int): num_workers for all the torch DataLoder
            eval_batch (int):
                During evaluation (valid or test), limit the number of batch.
                This is helpful for the fast development to check everything won't crash.
                If is -1, disable this feature and evaluate the entire epoch.
                Default: -1
            device (str):
                The device type for all torch-related operation: "cpu" or "cuda"
                Default: "cuda"
            world_size (int):
                How many processes are running this script simultaneously (in parallel).
                Usually this is just 1, however if you are runnig distributed training,
                this should be > 1.
                Default: 1
            rank (int):
                When distributed training, world_size > 1. Take :code:`world_size == 8` for
                example, this means 8 processes (8 GPUs) are runing in parallel. The script
                needs to know which process among 8 processes it is. In this case, :code:`rank`
                can range from 0~7. All the 8 processes have the same :code:`world_size` but
                different :code:`rank` (process id).
            test_ckpt_dir (str):
                Specify the checkpoint path for testing. If not, use the validation best
                checkpoint under the given :code:`target_dir` directory.
            **kwds:
                The other arguments like :code:`prepare_data` and :code:`build_model` are
                method specific-arguments for methods like :obj:`prepare_data` and
                :obj:`build_model`, and will not be used in the core :obj:`run` logic.
                See the specific method documentation for their supported arguments and
                meaning
        """

        yaml_path = Path(target_dir) / "configs" / f"{self._get_time_tag()}.yaml"
        yaml_path.parent.mkdir(exist_ok=True, parents=True)
        with yaml_path.open("w") as f:
            yaml.safe_dump(self._get_current_arguments(), f)

        cache_dir: str = cache_dir or Path.home() / ".cache" / "s3prl" / "data"
        prepare_data: dict = prepare_data or {}
        build_encoder: dict = build_encoder or {}
        build_dataset: dict = build_dataset or {}
        build_batch_sampler: dict = build_batch_sampler or {}
        build_collate_fn: dict = build_collate_fn or {}
        build_upstream: dict = build_upstream or {}
        build_featurizer: dict = build_featurizer or {}
        build_downstream: dict = build_downstream or {}
        build_model: dict = build_model or {}
        build_task: dict = build_task or {}
        build_optimizer: dict = build_optimizer or {}
        build_scheduler: dict = build_scheduler or {}
        save_model: dict = save_model or {}
        save_task: dict = save_task or {}
        train: dict = train or {}
        evaluate = evaluate or {}

        target_dir: Path = Path(target_dir)
        target_dir.mkdir(exist_ok=True, parents=True)

        cache_dir = Path(cache_dir)
        cache_dir.mkdir(exist_ok=True, parents=True)
        if remove_all_cache:
            shutil.rmtree(cache_dir)

        stage_id = 0
        if start <= stage_id:
            logger.info(f"Stage {stage_id}: prepare data")
            train_csv, valid_csv, test_csvs = self.prepare_data(
                prepare_data, target_dir, cache_dir, get_path_only=False
            )

        train_csv, valid_csv, test_csvs = self.prepare_data(
            prepare_data, target_dir, cache_dir, get_path_only=True
        )

        def check_fn():
            assert Path(train_csv).is_file() and Path(valid_csv).is_file()
            for test_csv in test_csvs:
                assert Path(test_csv).is_file()

        self._stage_check(stage_id, stop, check_fn)

        stage_id = 1
        if start <= stage_id:
            logger.info(f"Stage {stage_id}: build encoder")
            encoder_path = self.build_encoder(
                build_encoder,
                target_dir,
                cache_dir,
                train_csv,
                valid_csv,
                test_csvs,
                get_path_only=False,
            )

        encoder_path = self.build_encoder(
            build_encoder,
            target_dir,
            cache_dir,
            train_csv,
            valid_csv,
            test_csvs,
            get_path_only=True,
        )

        def check_fn():
            assert Path(encoder_path).is_file()

        self._stage_check(stage_id, stop, check_fn)

        with open(encoder_path, "rb") as f:
            encoder = pickle.load(f)

        model_output_size = len(encoder)
        model = self.build_model(
            build_model,
            model_output_size,
            build_upstream,
            build_featurizer,
            build_downstream,
        )
        frame_shift = model.downsample_rate

        stage_id = 2
        train_dir = target_dir / "train"
        if start <= stage_id:
            logger.info(f"Stage {stage_id}: Train Model")
            train_ds, train_bs = self._build_dataset_and_sampler(
                target_dir,
                cache_dir,
                "train",
                train_csv,
                encoder_path,
                frame_shift,
                build_dataset,
                build_batch_sampler,
            )
            valid_ds, valid_bs = self._build_dataset_and_sampler(
                target_dir,
                cache_dir,
                "valid",
                valid_csv,
                encoder_path,
                frame_shift,
                build_dataset,
                build_batch_sampler,
            )

            with Path(encoder_path).open("rb") as f:
                encoder = pickle.load(f)

            build_model_all_args = dict(
                build_model=build_model,
                model_output_size=len(encoder),
                build_upstream=build_upstream,
                build_featurizer=build_featurizer,
                build_downstream=build_downstream,
            )
            build_task_all_args_except_model = dict(
                build_task=build_task,
                encoder=encoder,
                valid_df=pd.read_csv(valid_csv),
            )

            self.train(
                train,
                train_dir,
                build_model_all_args,
                build_task_all_args_except_model,
                save_model,
                save_task,
                build_optimizer,
                build_scheduler,
                evaluate,
                train_ds,
                train_bs,
                self.build_collate_fn(build_collate_fn, "train"),
                valid_ds,
                valid_bs,
                self.build_collate_fn(build_collate_fn, "valid"),
                device=device,
                eval_batch=eval_batch,
                num_workers=num_workers,
                world_size=world_size,
                rank=rank,
            )

            def check_fn():
                assert (train_dir / "valid_best").is_dir()

            self._stage_check(stage_id, stop, check_fn)

        stage_id = 3
        if start <= stage_id:
            test_ckpt_dir: Path = Path(
                test_ckpt_dir or target_dir / "train" / "valid_best"
            )
            assert test_ckpt_dir.is_dir()
            logger.info(f"Stage {stage_id}: Test model: {test_ckpt_dir}")
            for test_idx, test_csv in enumerate(test_csvs):
                test_name = Path(test_csv).stem
                test_dir: Path = (
                    target_dir
                    / "evaluate"
                    / test_ckpt_dir.relative_to(train_dir).as_posix().replace("/", "-")
                    / test_name
                )
                test_dir.mkdir(exist_ok=True, parents=True)

                logger.info(f"Stage {stage_id}.{test_idx}: Test model on {test_csv}")
                test_ds, test_bs = self._build_dataset_and_sampler(
                    target_dir,
                    cache_dir,
                    "test",
                    test_csv,
                    encoder_path,
                    frame_shift,
                    build_dataset,
                    build_batch_sampler,
                )

                _, valid_best_task = self.load_model_and_task(
                    test_ckpt_dir, task_overrides={"test_df": pd.read_csv(test_csv)}
                )
                logs = self.evaluate(
                    evaluate,
                    "test",
                    valid_best_task,
                    test_ds,
                    test_bs,
                    self.build_collate_fn(build_collate_fn, "test"),
                    eval_batch,
                    test_dir,
                    device,
                    num_workers,
                )
                test_metrics = {name: float(value) for name, value in logs.items()}
                logger.info(f"test results: {test_metrics}")
                with (test_dir / f"result.yaml").open("w") as f:
                    yaml.safe_dump(test_metrics, f)

    def _build_dataset_and_sampler(
        self,
        target_dir: str,
        cache_dir: str,
        mode: str,
        data_csv: str,
        encoder_path: str,
        frame_shift: int,
        build_dataset: dict,
        build_batch_sampler: dict,
    ):
        logger.info(f"Build {mode} dataset")
        dataset = self.build_dataset(
            build_dataset,
            target_dir,
            cache_dir,
            mode,
            data_csv,
            encoder_path,
            frame_shift,
        )
        logger.info(f"Build {mode} batch sampler")
        batch_sampler = self.build_batch_sampler(
            build_batch_sampler,
            target_dir,
            cache_dir,
            mode,
            data_csv,
            dataset,
        )
        return dataset, batch_sampler

    def build_task(
        self,
        build_task: dict,
        model: torch.nn.Module,
        encoder,
        valid_df: pd.DataFrame = None,
        test_df: pd.DataFrame = None,
    ):
        """
        Build the task, which defines the logics for every train/valid/test forward step for the :code:`model`,
        and the logics for how to reduce all the batch results from multiple train/valid/test steps into metrics

        By default build :obj:`UtteranceClassificationTask`

        Args:
            build_task (dict): same in :obj:`default_config`, no argument supported for now
            model (torch.nn.Module): the model built by :obj:`build_model`
            encoder: the encoder built by :obj:`build_encoder`

        Returns:
            Task
        """
        task = UtteranceClassificationTask(model, encoder)
        return task