File size: 13,219 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
"""
The setting of Superb KS
Authors
* Yist Y. Lin 2021
* Leo 2022
"""
import logging
import pickle
from pathlib import Path
from typing import OrderedDict
import pandas as pd
from omegaconf import MISSING
from torch.utils.data import Dataset
from s3prl.dataio.corpus.speech_commands import SpeechCommandsV1
from s3prl.dataio.encoder.category import CategoryEncoder
from s3prl.dataio.sampler import BalancedWeightedSampler, FixedBatchSizeBatchSampler
from s3prl.nn.linear import MeanPoolingLinear
from .superb_sid import SuperbSID
logger = logging.getLogger(__name__)
__all__ = [
"gsc1_for_classification",
"SuperbKS",
]
def gsc1_for_classification(
target_dir: str,
cache_dir: str,
gsc1: str,
gsc1_test: str,
get_path_only: bool = False,
):
"""
Prepare Google Speech Command for classfication task
following :obj:`SuperbKS.prepare_data` format.
Args:
gsc1 (str): The root path of the Google Speech Command V1 training set
gsc1_test (str): The root path of the Google Speech Command V1 test set
**others: refer to :obj:`SuperbKS.prepare_data`
"""
target_dir = Path(target_dir)
train_path = target_dir / f"train.csv"
valid_path = target_dir / f"valid.csv"
test_paths = [target_dir / f"test.csv"]
if get_path_only:
return train_path, valid_path, test_paths
def gsc_v1_for_superb(gsc1: str, gsc1_test: str):
corpus = SpeechCommandsV1(gsc1, gsc1_test)
def format_fields(data: dict):
import torchaudio
formated_data = OrderedDict()
for key, value in data.items():
data_point = {
"wav_path": value["wav_path"],
"label": value["class_name"],
"start_sec": None,
"end_sec": None,
}
if value["class_name"] == "_silence_":
# NOTE: for silence, crop into 1-second segments, which
# is the standard way reported in the original paper
info = torchaudio.info(value["wav_path"])
for start in list(range(info.num_frames))[:: info.sample_rate]:
seg = data_point.copy()
end = min(start + 1 * info.sample_rate, info.num_frames)
seg["start_sec"] = start / info.sample_rate
seg["end_sec"] = end / info.sample_rate
formated_data[f"{key}_{start}_{end}"] = seg
else:
formated_data[key] = data_point
return formated_data
train_data, valid_data, test_data = corpus.data_split
return (
format_fields(train_data),
format_fields(valid_data),
format_fields(test_data),
)
train_data, valid_data, test_data = gsc_v1_for_superb(gsc1, gsc1_test)
def dict_to_csv(data_dict, csv_path):
keys = sorted(list(data_dict.keys()))
fields = sorted(data_dict[keys[0]].keys())
data = dict()
for field in fields:
data[field] = []
for key in keys:
data[field].append(data_dict[key][field])
data["id"] = keys
df = pd.DataFrame(data)
df.to_csv(csv_path, index=False)
dict_to_csv(train_data, train_path)
dict_to_csv(valid_data, valid_path)
dict_to_csv(test_data, test_paths[0])
return train_path, valid_path, test_paths
class SuperbKS(SuperbSID):
def default_config(self) -> dict:
return dict(
start=0,
stop=None,
target_dir=MISSING,
cache_dir=None,
remove_all_cache=False,
prepare_data=dict(
gsc1=MISSING,
gsc1_test=MISSING,
),
build_encoder=dict(),
build_dataset=dict(
train=dict(
sox_effects=[
["channels", "1"],
["rate", "16000"],
["gain", "-3.0"],
],
),
valid=dict(
sox_effects=[
["channels", "1"],
["rate", "16000"],
["gain", "-3.0"],
],
),
test=dict(
sox_effects=[
["channels", "1"],
["rate", "16000"],
["gain", "-3.0"],
],
),
),
build_batch_sampler=dict(
train=dict(
batch_size=32,
),
valid=dict(
batch_size=32,
),
test=dict(
batch_size=32,
),
),
build_upstream=dict(
name=MISSING,
),
build_featurizer=dict(
layer_selections=None,
normalize=False,
),
build_downstream=dict(
hidden_size=256,
),
build_model=dict(
upstream_trainable=False,
),
build_task=dict(),
build_optimizer=dict(
name="Adam",
conf=dict(
lr=1.0e-4,
),
),
build_scheduler=dict(
name="ExponentialLR",
gamma=0.9,
),
save_model=dict(),
save_task=dict(),
train=dict(
total_steps=200000,
log_step=100,
eval_step=5000,
save_step=1000,
gradient_clipping=1.0,
gradient_accumulate=1,
valid_metric="accuracy",
valid_higher_better=True,
auto_resume=True,
resume_ckpt_dir=None,
),
evaluate=dict(),
)
def prepare_data(
self,
prepare_data: dict,
target_dir: str,
cache_dir: str,
get_path_only: bool = False,
):
"""
Prepare the task-specific data metadata (path, labels...).
By default call :obj:`gsc1_for_classification` with :code:`**prepare_data`
Args:
prepare_data (dict): same in :obj:`default_config`,
support arguments in :obj:`gsc1_for_classification`
target_dir (str): Parse your corpus and save the csv file into this directory
cache_dir (str): If the parsing or preprocessing takes too long time, you can save
the temporary files into this directory. This directory is expected to be shared
across different training sessions (different hypers and :code:`target_dir`)
get_path_only (str): Directly return the filepaths no matter they exist or not.
Returns:
tuple
1. train_path (str)
2. valid_path (str)
3. test_paths (List[str])
Each path (str) should be a csv file containing the following columns:
==================== ====================
column description
==================== ====================
id (str) - the unique id for this data point
wav_path (str) - the absolute path of the waveform file
label (str) - a string label of the waveform
start_sec (float) - optional, load the waveform from :code:`start_sec` seconds. If not presented or is :code:`math.nan`, load from the beginning.
end_sec (float) - optional, load the waveform from :code:`end_sec` seconds. If not presented or is :code:`math.nan`, load to the end.
==================== ====================
"""
return gsc1_for_classification(
**self._get_current_arguments(flatten_dict="prepare_data")
)
def build_encoder(
self,
build_encoder: dict,
target_dir: str,
cache_dir: str,
train_csv_path: str,
valid_csv_path: str,
test_csv_paths: list,
get_path_only: bool = False,
):
"""
Build the encoder (for the labels) given the data metadata, and return the saved encoder path.
By default generate and save a :obj:`s3prl.dataio.encoder.CategoryEncoder` from the :code:`label` column of all the csv files.
Args:
build_encoder (dict): same in :obj:`default_config`, no argument supported for now
target_dir (str): Save your encoder into this directory
cache_dir (str): If the preprocessing takes too long time, you can save
the temporary files into this directory. This directory is expected to be shared
across different training sessions (different hypers and :code:`target_dir`)
train_csv_path (str): the train path from :obj:`prepare_data`
valid_csv_path (str): the valid path from :obj:`prepare_data`
test_csv_paths (List[str]): the test paths from :obj:`prepare_data`
get_path_only (str): Directly return the filepaths no matter they exist or not.
Returns:
str
tokenizer_path: The tokenizer should be saved in the pickle format
"""
encoder_path = Path(target_dir) / "encoder.pkl"
if get_path_only:
return encoder_path
train_csv = pd.read_csv(train_csv_path)
valid_csv = pd.read_csv(valid_csv_path)
test_csvs = [pd.read_csv(path) for path in test_csv_paths]
all_csv = pd.concat([train_csv, valid_csv, *test_csvs])
labels = all_csv["label"].tolist()
encoder = CategoryEncoder(labels)
with open(encoder_path, "wb") as f:
pickle.dump(encoder, f)
return encoder
def build_batch_sampler(
self,
build_batch_sampler: dict,
target_dir: str,
cache_dir: str,
mode: str,
data_csv: str,
dataset: Dataset,
):
"""
Return the batch sampler for torch DataLoader.
By default for train and valid, use :obj:`BalancedWeightedSampler`; for test use
:obj:`FixedBatchSizeBatchSampler`
Args:
build_batch_sampler (dict): same in :obj:`default_config`
==================== ====================
key description
==================== ====================
train (dict) - arguments for :obj:`BalancedWeightedSampler`
valid (dict) - arguments for :obj:`BalancedWeightedSampler`
test (dict) - arguments for :obj:`FixedBatchSizeBatchSampler`
==================== ====================
target_dir (str): Current experiment directory
cache_dir (str): If the preprocessing takes too long time, save
the temporary files into this directory. This directory is expected to be shared
across different training sessions (different hypers and :code:`target_dir`)
mode (str): train/valid/test
data_csv (str): the :code:`mode` specific csv from :obj:`prepare_data`
dataset: the dataset from :obj:`build_dataset`
Returns:
batch sampler for torch DataLoader
"""
def _build_batch_sampler(
train: dict = None, valid: dict = None, test: dict = None
):
train = train or {}
valid = valid or {}
test = test or {}
csv = pd.read_csv(data_csv)
labels = csv["label"].tolist()
if mode == "train":
return BalancedWeightedSampler(labels, **train)
elif mode == "valid":
return BalancedWeightedSampler(labels, **valid)
elif mode == "test":
return FixedBatchSizeBatchSampler(csv, **test)
return _build_batch_sampler(**build_batch_sampler)
def build_downstream(
self,
build_downstream: dict,
downstream_input_size: int,
downstream_output_size: int,
downstream_downsample_rate: int,
):
"""
Return the task-specific downstream model.
By default build the :obj:`MeanPoolingLinear` model
Args:
build_downstream (dict): same in :obj:`default_config`,
support arguments of :obj:`MeanPoolingLinear`
downstream_input_size (int): the required input size of the model
downstream_output_size (int): the required output size of the model
downstream_input_stride (int): the input feature's stride (from 16 KHz)
Returns:
:obj:`AbsUtteranceModel`
"""
model = MeanPoolingLinear(
downstream_input_size, downstream_output_size, **build_downstream
)
return model
|