File size: 9,536 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
Utilities for file format conversion for Speaker Diarization

Authors:
  * Jiatong Shi 2021
  * Leo 2022
"""

import logging
import os
import re
import subprocess
from pathlib import Path
from typing import List

import numpy as np
import pandas as pd
import torch
from scipy.signal import medfilt
from tqdm import tqdm

logger = logging.getLogger(__name__)

RTTM_FORMAT = "SPEAKER {:s} 1 {:7.2f} {:7.2f} <NA> <NA> {:s} <NA>"

__all__ = [
    "kaldi_dir_to_rttm",
    "csv_to_kaldi_dir",
    "kaldi_dir_to_csv",
]


def kaldi_dir_to_rttm(data_dir: str, rttm_path: str):
    data_dir: Path = Path(data_dir)
    segments_file = data_dir / "segments"
    utt2spk_file = data_dir / "utt2spk"

    assert segments_file.is_file()
    assert utt2spk_file.is_file()

    utt2spk = {}
    with utt2spk_file.open() as f:
        for utt2spk_line in f.readlines():
            fields = utt2spk_line.strip().replace("\n", " ").split()
            assert len(fields) == 2
            utt, spk = fields
            utt2spk[utt] = spk

    with Path(rttm_path).open("w") as rttm_f:
        with segments_file.open() as f:
            for segment_line in f.readlines():
                fields = segment_line.strip().replace("\t", " ").split()
                assert len(fields) == 4
                utt, reco, start, end = fields
                spk = utt2spk[utt]
                print(
                    RTTM_FORMAT.format(
                        reco,
                        float(start),
                        float(end) - float(start),
                        spk,
                    ),
                    file=rttm_f,
                )


def make_rttm_and_score(
    prediction_dir: str,
    score_dir: str,
    gt_rttm: str,
    frame_shift: int,
    thresholds: List[int],
    medians: List[int],
    subsampling: int = 1,
    sampling_rate: int = 16000,
):
    Path(score_dir).mkdir(exist_ok=True, parents=True)
    dscore_dir = Path(score_dir) / "dscore"
    rttm_dir = Path(score_dir) / "rttm"
    result_dir = Path(score_dir) / "result"

    setting2dscore = []
    for th in thresholds:
        for med in medians:
            logger.info(f"Make RTTM with threshold {th}, median filter {med}")
            rttm_file = rttm_dir / f"threshold-{th}_median-{med}.rttm"
            make_rttm(
                prediction_dir,
                rttm_file,
                th,
                med,
                frame_shift,
                subsampling,
                sampling_rate,
            )

            logger.info(f"Scoring...")
            result_file = result_dir / f"threshold-{th}_median-{med}.result"
            overall_der = score_with_dscore(dscore_dir, rttm_file, gt_rttm, result_file)
            logger.info(f"DER: {overall_der}")

            setting2dscore.append(((th, med), overall_der))

    setting2dscore.sort(key=lambda x: x[1])
    (best_th, best_med), best_der = setting2dscore[0]
    return best_der, (best_th, best_med)


def make_rttm(
    prediction_dir: str,
    out_rttm_path: str,
    threshold: int,
    median: int,
    frame_shift: int,
    subsampling: int,
    sampling_rate: int,
):
    names = sorted([name for name in os.listdir(prediction_dir)])
    filepaths = [Path(prediction_dir) / name for name in names]

    Path(out_rttm_path).parent.mkdir(exist_ok=True, parents=True)
    with open(out_rttm_path, "w") as wf:
        for filepath in filepaths:
            session, _ = os.path.splitext(os.path.basename(filepath))
            data = torch.load(filepath).numpy()
            a = np.where(data > threshold, 1, 0)
            if median > 1:
                a = medfilt(a, (median, 1))
            factor = frame_shift * subsampling / sampling_rate
            for spkid, frames in enumerate(a.T):
                frames = np.pad(frames, (1, 1), "constant")
                (changes,) = np.where(np.diff(frames, axis=0) != 0)
                for s, e in zip(changes[::2], changes[1::2]):
                    print(
                        RTTM_FORMAT.format(
                            session,
                            s * factor,
                            (e - s) * factor,
                            session + "_" + str(spkid),
                        ),
                        file=wf,
                    )


def score_with_dscore(
    dscore_dir: str, hyp_rttm: str, gt_rttm: str, score_result: str
) -> float:
    """
    This function returns the overall DER score, and will also write the detailed scoring results
    to 'score_result'
    """
    dscore_dir: Path = Path(dscore_dir)
    Path(score_result).parent.mkdir(exist_ok=True, parents=True)

    if not dscore_dir.is_dir():
        logger.info(f"Cloning dscore into {dscore_dir}")
        subprocess.check_output(
            f"git clone https://github.com/nryant/dscore.git {dscore_dir}",
            shell=True,
        ).decode("utf-8")

    subprocess.check_call(
        f"python3 {dscore_dir}/score.py -r {gt_rttm} -s {hyp_rttm} > {score_result}",
        shell=True,
    )

    return get_overall_der_from_dscore_file(score_result)


def get_overall_der_from_dscore_file(score_result: str):
    with open(score_result) as file:
        lines = file.readlines()
        overall_lines = [line for line in lines if "OVERALL" in line]
        assert len(overall_lines) == 1
        overall_line = overall_lines[0]
        overall_line = re.sub("\t+", " ", overall_line)
        overall_line = re.sub(" +", " ", overall_line)
        overall_der = float(overall_line.split(" ")[3])
        # The overall der line should look like:
        # *** OVERALL *** DER JER ...
    return overall_der


def csv_to_kaldi_dir(csv: str, data_dir: str):
    logger.info(f"Convert csv {csv} into kaldi data directory {data_dir}")

    data_dir: Path = Path(data_dir)
    data_dir.mkdir(exist_ok=True, parents=True)

    df = pd.read_csv(csv)
    required = ["record_id", "wav_path", "utt_id", "speaker", "start_sec", "end_sec"]
    for r in required:
        assert r in df.columns

    reco2path = {}
    reco2dur = {}
    utt2spk = {}
    spk2utt = {}
    segments = []
    for rowid, row in tqdm(df.iterrows(), total=len(df)):
        record_id, wav_path, duration, utt_id, speaker, start_sec, end_sec = (
            row["record_id"],
            row["wav_path"],
            row["duration"],
            row["utt_id"],
            row["speaker"],
            row["start_sec"],
            row["end_sec"],
        )
        if record_id in reco2path:
            assert wav_path == reco2path[record_id]
        else:
            reco2path[record_id] = wav_path

        if record_id not in reco2dur:
            reco2dur[record_id] = duration
        else:
            assert reco2dur[record_id] == duration

        if utt_id not in utt2spk:
            utt2spk[utt_id] = str(speaker)
        else:
            assert utt2spk[utt_id] == str(speaker)

        if speaker not in spk2utt:
            spk2utt[speaker] = []
        spk2utt[speaker].append(utt_id)

        segments.append((utt_id, record_id, str(start_sec), str(end_sec)))

    with (data_dir / "wav.scp").open("w") as f:
        f.writelines([f"{reco} {path}\n" for reco, path in reco2path.items()])

    with (data_dir / "reco2dur").open("w") as f:
        f.writelines([f"{reco} {dur}\n" for reco, dur in reco2dur.items()])

    with (data_dir / "utt2spk").open("w") as f:
        f.writelines([f"{utt} {spk}\n" for utt, spk in utt2spk.items()])

    with (data_dir / "spk2utt").open("w") as f:
        f.writelines([f"{spk} {' '.join(utts)}\n" for spk, utts in spk2utt.items()])

    with (data_dir / "segments").open("w") as f:
        f.writelines(
            [f"{utt} {record} {start} {end}\n" for utt, record, start, end in segments]
        )


def kaldi_dir_to_csv(data_dir: str, csv: str):
    logger.info(f"Convert kaldi data directory {data_dir} into csv {csv}")

    data_dir: Path = Path(data_dir)

    assert (data_dir / "wav.scp").is_file()
    assert (data_dir / "segments").is_file()
    assert (data_dir / "utt2spk").is_file()
    assert (data_dir / "reco2dur").is_file()

    reco2path = {}
    with (data_dir / "wav.scp").open() as f:
        for line in f.readlines():
            line = line.strip()
            reco, path = line.split(" ")
            reco2path[reco] = path

    reco2dur = {}
    with (data_dir / "reco2dur").open() as f:
        for line in f.readlines():
            line = line.strip()
            reco, duration = line.split(" ")
            reco2dur[reco] = float(duration)

    utt2spk = {}
    with (data_dir / "utt2spk").open() as f:
        for line in f.readlines():
            line = line.strip()
            utt, spk = line.split(" ")
            utt2spk[utt] = spk

    row = []
    with (data_dir / "segments").open("r") as f:
        for line in f.readlines():
            line = line.strip()
            utt, reco, start, end = line.split(" ")
            row.append(
                (
                    reco,
                    reco2path[reco],
                    reco2dur[reco],
                    utt,
                    utt2spk[utt],
                    float(start),
                    float(end),
                )
            )

    recos, wav_paths, durations, utts, spks, starts, ends = zip(*row)
    pd.DataFrame(
        data=dict(
            record_id=recos,
            wav_path=wav_paths,
            utt_id=utts,
            speaker=spks,
            start_sec=starts,
            end_sec=ends,
            duration=durations,
        )
    ).to_csv(csv, index=False)