File size: 9,536 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
"""
Utilities for file format conversion for Speaker Diarization
Authors:
* Jiatong Shi 2021
* Leo 2022
"""
import logging
import os
import re
import subprocess
from pathlib import Path
from typing import List
import numpy as np
import pandas as pd
import torch
from scipy.signal import medfilt
from tqdm import tqdm
logger = logging.getLogger(__name__)
RTTM_FORMAT = "SPEAKER {:s} 1 {:7.2f} {:7.2f} <NA> <NA> {:s} <NA>"
__all__ = [
"kaldi_dir_to_rttm",
"csv_to_kaldi_dir",
"kaldi_dir_to_csv",
]
def kaldi_dir_to_rttm(data_dir: str, rttm_path: str):
data_dir: Path = Path(data_dir)
segments_file = data_dir / "segments"
utt2spk_file = data_dir / "utt2spk"
assert segments_file.is_file()
assert utt2spk_file.is_file()
utt2spk = {}
with utt2spk_file.open() as f:
for utt2spk_line in f.readlines():
fields = utt2spk_line.strip().replace("\n", " ").split()
assert len(fields) == 2
utt, spk = fields
utt2spk[utt] = spk
with Path(rttm_path).open("w") as rttm_f:
with segments_file.open() as f:
for segment_line in f.readlines():
fields = segment_line.strip().replace("\t", " ").split()
assert len(fields) == 4
utt, reco, start, end = fields
spk = utt2spk[utt]
print(
RTTM_FORMAT.format(
reco,
float(start),
float(end) - float(start),
spk,
),
file=rttm_f,
)
def make_rttm_and_score(
prediction_dir: str,
score_dir: str,
gt_rttm: str,
frame_shift: int,
thresholds: List[int],
medians: List[int],
subsampling: int = 1,
sampling_rate: int = 16000,
):
Path(score_dir).mkdir(exist_ok=True, parents=True)
dscore_dir = Path(score_dir) / "dscore"
rttm_dir = Path(score_dir) / "rttm"
result_dir = Path(score_dir) / "result"
setting2dscore = []
for th in thresholds:
for med in medians:
logger.info(f"Make RTTM with threshold {th}, median filter {med}")
rttm_file = rttm_dir / f"threshold-{th}_median-{med}.rttm"
make_rttm(
prediction_dir,
rttm_file,
th,
med,
frame_shift,
subsampling,
sampling_rate,
)
logger.info(f"Scoring...")
result_file = result_dir / f"threshold-{th}_median-{med}.result"
overall_der = score_with_dscore(dscore_dir, rttm_file, gt_rttm, result_file)
logger.info(f"DER: {overall_der}")
setting2dscore.append(((th, med), overall_der))
setting2dscore.sort(key=lambda x: x[1])
(best_th, best_med), best_der = setting2dscore[0]
return best_der, (best_th, best_med)
def make_rttm(
prediction_dir: str,
out_rttm_path: str,
threshold: int,
median: int,
frame_shift: int,
subsampling: int,
sampling_rate: int,
):
names = sorted([name for name in os.listdir(prediction_dir)])
filepaths = [Path(prediction_dir) / name for name in names]
Path(out_rttm_path).parent.mkdir(exist_ok=True, parents=True)
with open(out_rttm_path, "w") as wf:
for filepath in filepaths:
session, _ = os.path.splitext(os.path.basename(filepath))
data = torch.load(filepath).numpy()
a = np.where(data > threshold, 1, 0)
if median > 1:
a = medfilt(a, (median, 1))
factor = frame_shift * subsampling / sampling_rate
for spkid, frames in enumerate(a.T):
frames = np.pad(frames, (1, 1), "constant")
(changes,) = np.where(np.diff(frames, axis=0) != 0)
for s, e in zip(changes[::2], changes[1::2]):
print(
RTTM_FORMAT.format(
session,
s * factor,
(e - s) * factor,
session + "_" + str(spkid),
),
file=wf,
)
def score_with_dscore(
dscore_dir: str, hyp_rttm: str, gt_rttm: str, score_result: str
) -> float:
"""
This function returns the overall DER score, and will also write the detailed scoring results
to 'score_result'
"""
dscore_dir: Path = Path(dscore_dir)
Path(score_result).parent.mkdir(exist_ok=True, parents=True)
if not dscore_dir.is_dir():
logger.info(f"Cloning dscore into {dscore_dir}")
subprocess.check_output(
f"git clone https://github.com/nryant/dscore.git {dscore_dir}",
shell=True,
).decode("utf-8")
subprocess.check_call(
f"python3 {dscore_dir}/score.py -r {gt_rttm} -s {hyp_rttm} > {score_result}",
shell=True,
)
return get_overall_der_from_dscore_file(score_result)
def get_overall_der_from_dscore_file(score_result: str):
with open(score_result) as file:
lines = file.readlines()
overall_lines = [line for line in lines if "OVERALL" in line]
assert len(overall_lines) == 1
overall_line = overall_lines[0]
overall_line = re.sub("\t+", " ", overall_line)
overall_line = re.sub(" +", " ", overall_line)
overall_der = float(overall_line.split(" ")[3])
# The overall der line should look like:
# *** OVERALL *** DER JER ...
return overall_der
def csv_to_kaldi_dir(csv: str, data_dir: str):
logger.info(f"Convert csv {csv} into kaldi data directory {data_dir}")
data_dir: Path = Path(data_dir)
data_dir.mkdir(exist_ok=True, parents=True)
df = pd.read_csv(csv)
required = ["record_id", "wav_path", "utt_id", "speaker", "start_sec", "end_sec"]
for r in required:
assert r in df.columns
reco2path = {}
reco2dur = {}
utt2spk = {}
spk2utt = {}
segments = []
for rowid, row in tqdm(df.iterrows(), total=len(df)):
record_id, wav_path, duration, utt_id, speaker, start_sec, end_sec = (
row["record_id"],
row["wav_path"],
row["duration"],
row["utt_id"],
row["speaker"],
row["start_sec"],
row["end_sec"],
)
if record_id in reco2path:
assert wav_path == reco2path[record_id]
else:
reco2path[record_id] = wav_path
if record_id not in reco2dur:
reco2dur[record_id] = duration
else:
assert reco2dur[record_id] == duration
if utt_id not in utt2spk:
utt2spk[utt_id] = str(speaker)
else:
assert utt2spk[utt_id] == str(speaker)
if speaker not in spk2utt:
spk2utt[speaker] = []
spk2utt[speaker].append(utt_id)
segments.append((utt_id, record_id, str(start_sec), str(end_sec)))
with (data_dir / "wav.scp").open("w") as f:
f.writelines([f"{reco} {path}\n" for reco, path in reco2path.items()])
with (data_dir / "reco2dur").open("w") as f:
f.writelines([f"{reco} {dur}\n" for reco, dur in reco2dur.items()])
with (data_dir / "utt2spk").open("w") as f:
f.writelines([f"{utt} {spk}\n" for utt, spk in utt2spk.items()])
with (data_dir / "spk2utt").open("w") as f:
f.writelines([f"{spk} {' '.join(utts)}\n" for spk, utts in spk2utt.items()])
with (data_dir / "segments").open("w") as f:
f.writelines(
[f"{utt} {record} {start} {end}\n" for utt, record, start, end in segments]
)
def kaldi_dir_to_csv(data_dir: str, csv: str):
logger.info(f"Convert kaldi data directory {data_dir} into csv {csv}")
data_dir: Path = Path(data_dir)
assert (data_dir / "wav.scp").is_file()
assert (data_dir / "segments").is_file()
assert (data_dir / "utt2spk").is_file()
assert (data_dir / "reco2dur").is_file()
reco2path = {}
with (data_dir / "wav.scp").open() as f:
for line in f.readlines():
line = line.strip()
reco, path = line.split(" ")
reco2path[reco] = path
reco2dur = {}
with (data_dir / "reco2dur").open() as f:
for line in f.readlines():
line = line.strip()
reco, duration = line.split(" ")
reco2dur[reco] = float(duration)
utt2spk = {}
with (data_dir / "utt2spk").open() as f:
for line in f.readlines():
line = line.strip()
utt, spk = line.split(" ")
utt2spk[utt] = spk
row = []
with (data_dir / "segments").open("r") as f:
for line in f.readlines():
line = line.strip()
utt, reco, start, end = line.split(" ")
row.append(
(
reco,
reco2path[reco],
reco2dur[reco],
utt,
utt2spk[utt],
float(start),
float(end),
)
)
recos, wav_paths, durations, utts, spks, starts, ends = zip(*row)
pd.DataFrame(
data=dict(
record_id=recos,
wav_path=wav_paths,
utt_id=utts,
speaker=spks,
start_sec=starts,
end_sec=ends,
duration=durations,
)
).to_csv(csv, index=False)
|