File size: 6,528 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
from torch.nn import L1Loss

from s3prl.corpus.librispeech import librispeech_for_pretrain
from s3prl.dataset.pretrain_tera_pipe import PretrainTeraPipe
from s3prl.nn.predictor_mockingjay import PredictorMockingjay
from s3prl.nn.transformer_mockingjay import TransformerMockingjay
from s3prl.sampler import FixedBatchSizeBatchSampler, MaxTimestampBatchSampler
from s3prl.task import Task
from s3prl.task.feat_reconstruction_task import FeatReconstructionTask
from s3prl.util.configuration import override_parent_cfg
from s3prl.util.workspace import Workspace

from .base import SslProblem

_input_size = 80
_mask_args = dict(
    position_encoding_size=768,  # int, this should be identical to `hidden_size`
    mask_proportion=0.15,  # float, mask this percentage of all spectrogram frames in each sequence at random during MAM training
    mask_consecutive_min=7,  # int, mask this amount of consecutive frames
    mask_consecutive_max=7,  # int, mask this amount of consecutive frames
    mask_allow_overlap=True,  # bool, allow overlap masking
    mask_bucket_ratio=1.5,  # float, only used when overlap is not allowed. sample a mask from each bucket in size of [sampled mask_consecutive * mask_bucket_ratio]
    mask_frequency=0.2,  # float, mask maximum this percentage of frequency bands, set to 0 for no frequency mask
)
_noise_args = dict(
    noise_proportion=0.0,  # float, for this percentage of the time, Gaussian noise will be applied on all frames during MAM training, set to 0 for no noise
)
_audio_config = dict(
    win_ms=25,
    hop_ms=10,
    n_freq=201,
    n_mels=_input_size,
    n_mfcc=13,
    input={
        "channel": 0,
        "cmvn": True,
        "delta": 0,
        "feat_type": "mel",
        "log": True,
    },
    target={
        "channel": 1,
        "cmvn": True,
        "delta": 0,
        "feat_type": "mel",
        "log": True,
    },
)
_pretrain_task_pipe_config = dict(
    _cls=PretrainTeraPipe,
    target_level=-25,
    **_mask_args,
    **_noise_args,
    **_audio_config,
)
_transformer_config = dict(
    hidden_size=768,  # Size of the encoder layers and the pooler layer.
    num_hidden_layers=3,  # Number of hidden layers in the Transformer encoder.
    num_attention_heads=12,  # Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size=3072,  # The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act="gelu",  # The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
    hidden_dropout_prob=0.1,  # The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob=0.1,  # The dropout ratio for the attention probabilities.
    initializer_range=0.02,  # The sttdev of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps=1.0e-12,  # The epsilon used by LayerNorm.
    share_layer=False,  # Share layer weights
    pre_layer_norm=False,  # To apply the pre layer normalization technique introduced in: https://arxiv.org/abs/2002.04745
)


class Tera(SslProblem):
    """
    Tera pre-train problem
    """

    @override_parent_cfg(
        corpus=dict(
            _cls=librispeech_for_pretrain,
            dataset_root="???",
        ),
        train_datapipe=_pretrain_task_pipe_config,
        train_sampler=dict(
            _cls=MaxTimestampBatchSampler,
            max_timestamp=16000 * 20,
            shuffle=True,
        ),
        valid_datapipe=_pretrain_task_pipe_config,
        valid_sampler=dict(
            _cls=FixedBatchSizeBatchSampler,
            batch_size=2,
        ),
        test_datapipe=_pretrain_task_pipe_config,
        test_sampler=dict(
            _cls=FixedBatchSizeBatchSampler,
            batch_size=2,
        ),
        upstream=dict(
            _cls=TransformerMockingjay,
            config=_transformer_config,
            input_dim=_input_size,
            output_attentions=False,
            keep_multihead_output=False,
            with_input_module=True,
        ),
        predictor=dict(
            _cls=PredictorMockingjay,
            config=_transformer_config,
            output_dim=_input_size,
            input_dim=None,  # automatically use `hidden_size` from `_transformer_config`
        ),
        task=dict(
            _cls=FeatReconstructionTask,
            loss=L1Loss,
        ),
    )
    @classmethod
    def setup_problem(cls, **cfg):
        """
        This setups the Tera problem, containing train/valid/test datasets & samplers and a task object
        """
        super().setup_problem(**cfg)

    @override_parent_cfg(
        optimizer=dict(
            _cls="torch.optim.AdamW",
            lr=2.0e-4,
        ),
        trainer=dict(
            total_steps=1000000,
            eval_step=50000,
            save_step=50000,
            gradient_clipping=5.0,
            gradient_accumulate_steps=4,
            valid_metric="loss",
            valid_higher_better=False,
        ),
    )
    @classmethod
    def train(cls, **cfg):
        """
        Train the setup problem with the train/valid datasets & samplers and the task object
        """
        super().train(**cfg)

    @override_parent_cfg()
    @classmethod
    def inference(cls, **cfg):
        super().inference(**cfg)

    @classmethod
    def save_additional(
        cls,
        additional_dir: Workspace,
        workspace: Workspace,
        task: Task,
    ):
        all_states = dict(
            Config={},  # placeholder
            SpecHead=task.predictor.state_dict(),
            Transformer=task.upstream.state_dict(),
            Upstream_Config=dict(
                transformer=_transformer_config,
                audio=_audio_config,
                task=dict(sequence_length=0),
            ),
        )
        all_states["Upstream_Config"]["audio"][
            "target_level"
        ] = _pretrain_task_pipe_config["target_level"]
        torch.save(
            all_states, str(additional_dir.parent.resolve()) + "/all_states.ckpt"
        )

    @override_parent_cfg(
        start_stage=0,
        final_stage=2,
        stage_0=dict(
            _method="setup_problem",
        ),
        stage_1=dict(
            _method="train",
        ),
        stage_2=dict(
            _method="inference",
        ),
    )
    @classmethod
    def run_stages(cls, **cfg):
        super().run_stages(**cfg)