File size: 2,987 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
from s3prl import Container
from s3prl.corpus.speech_commands import gsc_v1_for_superb
from s3prl.dataset.utterance_classification_pipe import UtteranceClassificationPipe
from s3prl.nn import MeanPoolingLinear
from s3prl.sampler import BalancedWeightedSampler, FixedBatchSizeBatchSampler
from s3prl.task.utterance_classification_task import UtteranceClassificationTask
from s3prl.util.configuration import default_cfg
from .base import SuperbProblem
EFFECTS = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]]
class SuperbKS(SuperbProblem):
@default_cfg(
**SuperbProblem.setup.default_except(
corpus=dict(
CLS=gsc_v1_for_superb,
dataset_root="???",
),
train_datapipe=dict(
CLS=UtteranceClassificationPipe,
train_category_encoder=True,
sox_effects=EFFECTS,
),
train_sampler=dict(
CLS=BalancedWeightedSampler,
batch_size=32,
),
valid_datapipe=dict(
CLS=UtteranceClassificationPipe,
sox_effects=EFFECTS,
),
valid_sampler=dict(
CLS=BalancedWeightedSampler,
batch_size=32,
),
test_datapipe=dict(
CLS=UtteranceClassificationPipe,
sox_effects=EFFECTS,
),
test_sampler=dict(
CLS=FixedBatchSizeBatchSampler,
batch_size=32,
),
downstream=dict(
CLS=MeanPoolingLinear,
hidden_size=256,
),
task=dict(
CLS=UtteranceClassificationTask,
),
)
)
@classmethod
def setup(cls, **cfg):
super().setup(**cfg)
@default_cfg(
**SuperbProblem.train.default_except(
optimizer=dict(
CLS="torch.optim.Adam",
lr=1.0e-4,
),
trainer=dict(
total_steps=200000,
log_step=100,
eval_step=5000,
save_step=1000,
gradient_clipping=1.0,
gradient_accumulate_steps=1,
valid_metric="accuracy",
valid_higher_better=True,
),
)
)
@classmethod
def train(cls, **cfg):
super().train(**cfg)
@default_cfg(**SuperbProblem.inference.default_cfg)
@classmethod
def inference(cls, **cfg):
super().inference(**cfg)
@default_cfg(
stages=["setup", "train", "inference"],
start_stage="setup",
final_stage="inference",
setup=setup.default_cfg.deselect("workspace", "resume"),
train=train.default_cfg.deselect("workspace", "resume"),
inference=inference.default_cfg.deselect("workspace", "resume"),
)
@classmethod
def run(cls, **cfg):
super().run(**cfg)
|