File size: 13,607 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import logging
import os
import re
import subprocess
import tempfile
from collections import defaultdict
from concurrent.futures import ProcessPoolExecutor, as_completed
from functools import partial
from pathlib import Path

import numpy as np
import torch
import torch.nn as nn
from dtw import dtw
from lxml import etree
from scipy.spatial import distance
from tqdm import tqdm

from s3prl import Container
from s3prl.corpus.quesst14 import quesst14_for_qbe
from s3prl.dataset.base import AugmentedDynamicItemDataset, DataPipe, SequentialDataPipe
from s3prl.dataset.common_pipes import LoadAudio, SetOutputKeys
from s3prl.sampler import FixedBatchSizeBatchSampler
from s3prl.task.dump_feature import DumpFeature
from s3prl.util import workspace
from s3prl.util.configuration import default_cfg, field
from s3prl.util.workspace import Workspace, as_type

from .base import SuperbProblem

logger = logging.getLogger(__name__)


def cosine_exp(query, doc):
    dist = distance.cdist(query, doc, "cosine")
    dist = np.exp(dist) - 1
    return dist


def cosine_neg_log(query, doc):
    dist = distance.cdist(query, doc, "cosine")
    dist = -1 * np.log(1 - dist)
    return dist


class QbeDumpFeaturePipe(DataPipe):
    def __init__(
        self,
        output_keys: dict = None,
        sox_effects: list = None,
    ):
        output_keys = output_keys or dict(
            x="wav",
            x_len="wav_len",
            unique_name="id",
        )
        self.pipes = SequentialDataPipe(
            LoadAudio(sox_effects=sox_effects),
            SetOutputKeys(output_keys=output_keys),
        )

    def forward(
        self, dataset: AugmentedDynamicItemDataset
    ) -> AugmentedDynamicItemDataset:
        return self.pipes(dataset)


class SuperbQBE(SuperbProblem):
    @default_cfg(
        workspace="???",
        corpus=dict(
            CLS=quesst14_for_qbe,
            dataset_root="???",
        ),
        all_datapipe=dict(
            CLS=QbeDumpFeaturePipe,
            sox_effects=[
                ["channels", "1"],
                ["rate", "16000"],
                ["gain", "-3.0"],
            ],
        ),
        all_sampler=dict(
            CLS=FixedBatchSizeBatchSampler,
            batch_size=1,
        ),
        upstream=dict(
            CLS="S3PRLUpstream",
            name="???",
        ),
        task=dict(
            CLS=DumpFeature,
        ),
    )
    @classmethod
    def setup(cls, **cfg):
        cfg = Container(cfg)
        workspace = Workspace(cfg.workspace)

        if not isinstance(cfg.upstream, nn.Module):
            model = cfg.upstream.CLS(**cfg.upstream.kwds())
        else:
            model = cfg.upstream

        logger.info("Preparing corpus")
        all_data, valid_query_keys, test_query_keys, doc_keys = cfg.corpus.CLS(
            **cfg.corpus.kwds()
        ).slice(4)

        logger.info("Preparing train data")
        all_dataset = AugmentedDynamicItemDataset(all_data)
        all_dataset = SequentialDataPipe(*cfg.all_datapipe.tolist())(all_data)
        all_sampler = cfg.all_sampler.CLS(all_dataset, **cfg.all_sampler.kwds())

        task = cfg.task.CLS(model, **cfg.task.kwds())

        workspace.update(
            dict(
                all_dataset=all_dataset,
                all_sampler=all_sampler,
                task=task,
                valid_query_keys=as_type(valid_query_keys, "yaml"),
                test_query_keys=as_type(test_query_keys, "yaml"),
                doc_keys=as_type(doc_keys, "yaml"),
            )
        )

        # This is for easy reuse the inference command for feature extraction
        workspace.link_from("valid_best_task", workspace, "task")

    @default_cfg(
        **SuperbProblem.inference.default_except(
            split_name="all",
        )
    )
    @classmethod
    def inference(cls, **cfg):
        super().inference(**cfg)

    @default_cfg(
        workspace=field(
            "???",
            "Should have 'feat' sub-workspace, 'valid_query_keys', 'test_query_keys', and 'doc_keys'",
        ),
        dtw=dict(),
        doc_num=field(
            -1,
            "Only take the first 'doc_num' docs to be searched by the queries. Set -1 to disable",
        ),
    )
    @classmethod
    def dtw_for_quesst14(cls, **cfg):
        cfg = Container(cfg)
        workspace = Workspace(cfg.workspace)

        feat_dir = workspace / "feat"
        assert len(feat_dir.files()) > 0, f"No files in {feat_dir}"
        num_layers = feat_dir[feat_dir.files()[0]].shape[0]

        valid_query_keys = workspace["valid_query_keys"]
        doc_keys = workspace["doc_keys"]
        if cfg.doc_num != -1:
            doc_keys = doc_keys[: cfg.doc_num]

        layer_mtwv = {}
        scoring_dir = (
            Workspace(workspace.get_cfg(cls.setup).corpus.dataset_root) / "scoring"
        )

        layers = cfg.layers or range(num_layers)
        for layer_id in layers:
            queries = []
            for key in tqdm(
                valid_query_keys, desc=f"Load valid query features for layer {layer_id}"
            ):
                queries.append(torch.from_numpy(feat_dir[key][layer_id]))

            docs = []
            for key in tqdm(doc_keys, desc=f"Load doc features for layer {layer_id}"):
                docs.append(torch.from_numpy(feat_dir[key][layer_id]))

            valid_results = cls.dtw(
                queries, valid_query_keys, docs, doc_keys, **cfg.dtw.kwds()
            )

            layer_dir = workspace / f"valid_layer_{layer_id}"
            metrics = cls._scoring(valid_results, layer_dir, scoring_dir, is_valid=True)
            layer_dir.put(metrics, "metrics", "yaml")
            layer_mtwv[layer_id] = metrics.maxTWV
        del queries
        del docs

        layer_mtwv = [(layer_id, mtwv) for layer_id, mtwv in layer_mtwv.items()]
        layer_mtwv.sort(key=lambda x: x[1], reverse=True)
        logger.info("Sorted all-layer results:")
        for layer_id, mtwv in layer_mtwv:
            logger.info(f"Layer {layer_id} valid maxTWV: {mtwv}")

        best_layer_id = layer_mtwv[0][0]
        logger.info(f"The best valid layer: {best_layer_id}")

        test_query_keys = workspace["test_query_keys"]
        queries = []
        for key in tqdm(
            test_query_keys, desc=f"Load test query features for layer {best_layer_id}"
        ):
            queries.append(torch.from_numpy(feat_dir[key][best_layer_id]))

        docs = []
        for key in tqdm(doc_keys, desc=f"Load doc features for layer {best_layer_id}"):
            docs.append(torch.from_numpy(feat_dir[key][best_layer_id]))

        test_results = cls.dtw(
            queries, test_query_keys, docs, doc_keys, **cfg.dtw.kwds()
        )
        layer_dir = workspace / f"test_layer_{best_layer_id}"
        metrics = cls._scoring(test_results, layer_dir, scoring_dir, is_valid=False)
        layer_dir.put(metrics, "test_metrics", "yaml")
        workspace.link_from("valid_best_metrics", layer_dir, "test_metrics")
        logger.info(
            f"The best valid layer's (layer {best_layer_id}) test maxTWV: {metrics.maxTWV}"
        )

    @default_cfg(
        **SuperbProblem.run.default_except(
            stages=["setup", "inference", "dtw_for_quesst14"],
            start_stage="setup",
            final_stage="dtw_for_quesst14",
            setup=setup.default_cfg.deselect("workspace", "resume", "dryrun"),
            inference=inference.default_cfg.deselect("workspace", "dryrun"),
            dtw_for_quesst14=dtw_for_quesst14.default_cfg.deselect("workspace"),
        )
    )
    @classmethod
    def run(cls, **cfg):
        super().run(**cfg)

    @classmethod
    def dtw(
        cls,
        queries,
        queries_name,
        docs,
        doc_names,
        feature_normalization: bool = True,
        dist_method: str = "cosine_exp",
        step_pattern: str = "asymmetric",
        minmax_norm: bool = True,
        subsequence: bool = True,
        n_jobs: int = 12,
    ):
        """
        Return:
            results (dict):
                key is query name, value is a list of (doc_name, doc_score) where score is higher better
        """
        # Normalize upstream features
        feature_mean, feature_std = 0.0, 1.0
        if feature_normalization:
            feats = torch.cat([*queries, *docs])
            feature_mean = feats.mean(0)
            feature_std = torch.clamp(feats.std(0), 1e-9)
        queries = [((query - feature_mean) / feature_std).numpy() for query in queries]
        docs = [((doc - feature_mean) / feature_std).numpy() for doc in docs]

        # Define distance function for DTW
        if dist_method == "cosine_exp":
            dist_fn = cosine_exp
        elif dist_method == "cosine_neg_log":
            dist_fn = cosine_neg_log
        else:
            dist_fn = partial(distance.cdist, metric=dist_method)

        # Define DTW configurations
        dtwrc = {
            "step_pattern": step_pattern,
            "keep_internals": False,
            "distance_only": False if subsequence else True,
            "open_begin": True if subsequence else False,
            "open_end": True if subsequence else False,
        }

        # Calculate matching scores
        results = defaultdict(list)
        with ProcessPoolExecutor(max_workers=n_jobs) as executor:
            futures = []
            for query, query_name in zip(queries, queries_name):
                if len(query) < 5:  # Do not consider too short queries
                    results[query_name] = [(doc_name, 0) for doc_name in doc_names]
                    continue
                for doc, doc_name in zip(docs, doc_names):
                    futures.append(
                        executor.submit(
                            cls.match,
                            query,
                            doc,
                            query_name,
                            doc_name,
                            dist_fn,
                            minmax_norm,
                            dtwrc,
                        )
                    )
            for future in tqdm(
                as_completed(futures),
                total=len(futures),
                dynamic_ncols=True,
                desc="dtw",
            ):
                query_name, doc_name, score = future.result()
                results[query_name].append((doc_name, score))

        # Normalize scores with regard to each query
        for query_name, doc_scores in results.items():
            names, scores = zip(*doc_scores)
            scores = np.array(scores)
            scores = (scores - scores.mean()) / np.clip(scores.std(), 1e-9, np.inf)
            results[query_name] = list(zip(names, scores))

        return results

    @classmethod
    def match(cls, query, doc, query_name, doc_name, dist_fn, minmax_norm, dtwrc):
        """Match between a query and a doc."""
        dist = dist_fn(query, doc)

        if minmax_norm:
            dist_min = dist.min(1)[:, np.newaxis]
            dist_max = dist.max(1)[:, np.newaxis]
            dist = (dist - dist_min) / np.clip(dist_max - dist_min, 1e-9, np.inf)

        dtw_result = dtw(x=dist, **dtwrc)
        cost = dtw_result.normalizedDistance
        return query_name, doc_name, -1 * cost

    @classmethod
    def _scoring(
        cls,
        results,
        workspace: Workspace,
        scoring_dir: Workspace,
        is_valid: bool = True,
    ):
        # Scores above 2 STDs are seen as detected (top 2.5% as YES)
        score_thresh = 2.0

        # Build XML tree
        root = etree.Element(
            "stdlist",
            termlist_filename="benchmark.stdlist.xml",
            indexing_time="1.00",
            language="english",
            index_size="1",
            system_id="benchmark",
        )
        for query_name, doc_scores in results.items():
            term_list = etree.SubElement(
                root,
                "detected_termlist",
                termid=query_name,
                term_search_time="1.0",
                oov_term_count="1",
            )
            for doc_name, score in doc_scores:
                etree.SubElement(
                    term_list,
                    "term",
                    file=doc_name,
                    channel="1",
                    tbeg="0.000",
                    dur="0.00",
                    score=f"{score:.4f}",
                    decision="YES" if score > score_thresh else "NO",
                )

        workspace.mkdir(exist_ok=True, parents=True)
        xml_path = str((workspace / "benchmark.stdlist.xml").resolve())
        etree.ElementTree(root).write(
            xml_path,
            encoding="UTF-8",
            pretty_print=True,
        )

        current_dir = os.getcwd()
        os.chdir(str(scoring_dir))

        target = "groundtruth_quesst14_dev" if is_valid else "groundtruth_quesst14_eval"
        try:
            result = subprocess.check_output(
                f"./score-TWV-Cnxe.sh {Path(xml_path).parent} {target} -10",
                shell=True,
            ).decode("utf-8")
        except subprocess.CalledProcessError as e:
            result = e.output.decode("utf-8")

        assert "maxTWV" in result
        actTWV, maxTWV, threshold = re.search(
            "actTWV: (.+) maxTWV: (.+) Threshold: (.+)\n",
            result,
        ).groups()

        os.chdir(current_dir)
        return Container(
            actTWV=float(actTWV.strip()),
            maxTWV=float(maxTWV.strip()),
            threshold=float(threshold.strip()),
        )