File size: 10,782 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
from __future__ import annotations
import logging
import re
import subprocess
from pathlib import Path
import numpy as np
from scipy.signal import medfilt
from tqdm import tqdm
from s3prl.base import Container
from s3prl.base.workspace import Workspace
from s3prl.corpus.kaldi import kaldi_for_multiclass_tagging
from s3prl.dataset.base import SequentialDataPipe
from s3prl.dataset.chunking import UnfoldChunkByFrame
from s3prl.dataset.common_pipes import LoadAudio, SetOutputKeys
from s3prl.dataset.multiclass_tagging import BuildMultiClassTagging
from s3prl.encoder.category import CategoryEncoder
from s3prl.nn.rnn import SuperbDiarizationModel
from s3prl.sampler import FixedBatchSizeBatchSampler, GroupSameItemSampler
from s3prl.task.diarization import DiarizationPIT
from s3prl.util.configuration import default_cfg, field
from .base import SuperbProblem
logger = logging.getLogger(__name__)
class SuperbSDDatapipe(SequentialDataPipe):
def __init__(
self,
feat_frame_shift: int,
sample_rate: int = 16000,
**kwds,
):
super().__init__(
UnfoldChunkByFrame(
min_chunk_frames=2000,
max_chunk_frames=2000,
step_frames=2000,
feat_frame_shift=feat_frame_shift,
sample_rate=sample_rate,
),
BuildMultiClassTagging(
sample_rate=sample_rate, feat_frame_shift=feat_frame_shift
),
LoadAudio(audio_sample_rate=sample_rate),
SetOutputKeys(
x="wav",
x_len="wav_len",
label="multiclass_tag",
label_len="tag_len",
rec_id="unchunked_id",
order_in_rec="chunk_index",
),
)
def prediction_numpy_to_segment_secs(
prediction: np.ndarray,
threshold: float = 0.5,
median_filter: int = 1,
frame_shift: int = 160,
subsampling: int = 1,
sampling_rate: int = 16000,
):
"""
prediction: (timestamps, class_num), all values are in 0~1
"""
hard_pred = np.where(prediction > threshold, 1, 0)
if median_filter > 1:
hard_pred = medfilt(hard_pred, (median_filter, 1))
factor = frame_shift * subsampling / sampling_rate
segments = dict()
for classid, frames in enumerate(hard_pred.T):
frames = np.pad(frames, (1, 1), "constant")
(changes,) = np.where(np.diff(frames, axis=0) != 0)
if len(changes) > 0:
class_name = str(classid)
segments[class_name] = []
for s, e in zip(changes[::2], changes[1::2]):
start = s * factor
end = e * factor
segments[class_name].append((start, end))
return segments
class SuperbSD(SuperbProblem):
"""
Superb Intent Classification problem
"""
@default_cfg(
**SuperbProblem.setup.default_except(
corpus=dict(
CLS=kaldi_for_multiclass_tagging,
dataset_root="???",
),
train_datapipe=dict(
CLS=SuperbSDDatapipe,
train_category_encoder=True,
),
train_sampler=dict(
CLS=FixedBatchSizeBatchSampler,
batch_size=8,
shuffle=True,
),
valid_datapipe=dict(
CLS=SuperbSDDatapipe,
),
valid_sampler=dict(
CLS=FixedBatchSizeBatchSampler,
batch_size=1,
),
test_datapipe=dict(
CLS=SuperbSDDatapipe,
),
test_sampler=dict(
CLS=GroupSameItemSampler,
item_name="unchunked_id",
item_order_name="chunk_index",
),
downstream=dict(
CLS=SuperbDiarizationModel,
output_size=2, # speaker num per recording
hidden_size=512,
rnn_layers=1,
),
task=dict(
CLS=DiarizationPIT,
),
)
)
@classmethod
def setup(cls, **cfg):
"""
This setups the IC problem, containing train/valid/test datasets & samplers and a task object
"""
super().setup(**cfg)
@default_cfg(
**SuperbProblem.train.default_except(
optimizer=dict(
CLS="torch.optim.Adam",
lr=1.0e-4,
),
trainer=dict(
total_steps=30000,
log_step=500,
eval_step=500,
save_step=500,
gradient_clipping=1.0,
gradient_accumulate_steps=4,
valid_metric="der",
valid_higher_better=False,
),
)
)
@classmethod
def train(cls, **cfg):
"""
Train the setup problem with the train/valid datasets & samplers and the task object
"""
super().train(**cfg)
@default_cfg(**SuperbProblem.inference.default_cfg)
@classmethod
def inference(cls, **cfg):
super().inference(**cfg)
@default_cfg(
workspace="???",
prediction=field(
"prediction",
"The directory name under the workspace containing all the predicted numpy",
),
test_data=field("test_data", "The testing data (in dict) under this workspace"),
median_filters=field([1, 11], "The median filter sizes to try when scoring"),
thresholds=field(
[0.3, 0.4, 0.5, 0.6, 0.7],
"The threshold to try when determining 0/1 hard prediction.\n"
"The raw predictions are all between 0~1\n",
),
frame_shift=field(
None,
"The frame shift of the prediction np.ndarray. Used to map the frame-level prediction back to seconds",
int,
),
)
@classmethod
def scoring(cls, **cfg):
cfg = Container(cfg)
workspace = Workspace(cfg.workspace)
frame_shift = cfg.frame_shift or workspace.environ["feat_frame_shift"]
test_data: dict = workspace[cfg.test_data]
test_segments = {
reco: data_point["segments"] for reco, data_point in test_data.items()
}
test_rttm = workspace.put(test_segments, "test_rttm", "rttm")
rttm_dir = workspace / "rttm"
scoring_dir = workspace / "scoring"
scoring_dir.mkdir(exist_ok=True, parents=True)
all_ders = []
reco2pred = {}
for p in tqdm((workspace / cfg.prediction).files(), desc="Load prediction"):
reco2pred[p] = (workspace / cfg.prediction)[p]
for median_filter in cfg.median_filters:
for threshold in cfg.thresholds:
logger.info(
"Decode prediction numpy array with the setting: median filter="
f"{median_filter}, threshold={threshold}"
)
all_segments = dict()
workspace = Workspace(workspace)
at_least_one_segment = False
for p in tqdm(
(workspace / cfg.prediction).files(), desc="prediction to seconds"
):
segments = prediction_numpy_to_segment_secs(
reco2pred[p],
threshold,
median_filter,
frame_shift,
)
if len(segments) > 0:
at_least_one_segment = True
all_segments[p] = segments
if not at_least_one_segment:
logger.info("No segments found under this decoding setting")
continue
identifier = f"hyp_threshold-{threshold}_median-{median_filter}"
hyp_rttm = rttm_dir.put(all_segments, identifier, "rttm")
overall_der = cls.score_with_dscore(
dscore_dir=workspace / "dscore",
hyp_rttm=hyp_rttm,
gt_rttm=test_rttm,
score_file=Path(scoring_dir / identifier),
)
logger.info(
f"Overall DER with median_filter {median_filter} and threshold {threshold}: {overall_der}"
)
all_ders.append(overall_der)
all_ders.sort()
best_der = all_ders[0]
logger.info(f"Best DER on test data: {best_der}")
workspace.put(dict(der=best_der), "test_metric", "yaml")
@default_cfg(
**SuperbProblem.run.default_except(
stages=["setup", "train", "inference", "scoring"],
start_stage="setup",
final_stage="scoring",
setup=setup.default_cfg.deselect("workspace", "resume", "dryrun"),
train=train.default_cfg.deselect("workspace", "resume", "dryrun"),
inference=inference.default_cfg.deselect("workspace", "resume", "dryrun"),
scoring=scoring.default_cfg.deselect("workspace"),
)
)
@classmethod
def run(cls, **cfg):
super().run(**cfg)
@default_cfg(
dscore_dir=field("???", "The directory containing the 'dscore' repository"),
hyp_rttm=field("???", "The hypothesis rttm file"),
gt_rttm=field("???", "The ground truth rttm file"),
score_file=field("???", "The scored result file"),
)
@classmethod
def score_with_dscore(cls, **cfg) -> float:
"""
This function returns the overall DER score, and will also write the detailed scoring results
to 'score_file'
"""
cfg = Container(cfg)
dscore_dir = Workspace(cfg.dscore_dir)
if not dscore_dir.is_dir() or "score" not in dscore_dir.files():
subprocess.check_output(
f"git clone https://github.com/nryant/dscore.git {dscore_dir}",
shell=True,
).decode("utf-8")
result = subprocess.check_call(
f"python3 {dscore_dir}/score.py -r {cfg.gt_rttm} -s {cfg.hyp_rttm} > {cfg.score_file}",
shell=True,
)
assert result == 0, "The scoring step fail."
with open(cfg.score_file) as file:
lines = file.readlines()
overall_lines = [line for line in lines if "OVERALL" in line]
assert len(overall_lines) == 1
overall_line = overall_lines[0]
overall_line = re.sub("\t+", " ", overall_line)
overall_line = re.sub(" +", " ", overall_line)
overall_der = float(overall_line.split(" ")[3])
# The overall der line should look like:
# *** OVERALL *** DER JER ...
return overall_der
|