File size: 4,183 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from s3prl.corpus.snips import snips_for_speech2text
from s3prl.dataset.speech2text_pipe import Speech2TextPipe
from s3prl.nn import RNNEncoder
from s3prl.nn.specaug import ModelWithSpecaug
from s3prl.sampler import FixedBatchSizeBatchSampler, SortedSliceSampler
from s3prl.task.speech2text_ctc_task import Speech2TextCTCTask
from s3prl.util.configuration import default_cfg
from s3prl.utility.download import _urls_to_filepaths

from .base import SuperbProblem

VOCAB_URL = "https://huggingface.co/datasets/s3prl/SNIPS/raw/main/character.txt"
SLOTS_URL = "https://huggingface.co/datasets/s3prl/SNIPS/raw/main/slots.txt"


class SuperbSF(SuperbProblem):
    @default_cfg(
        **SuperbProblem.setup.default_except(
            corpus=dict(
                CLS=snips_for_speech2text,
                dataset_root="???",
            ),
            train_datapipe=dict(
                CLS=Speech2TextPipe,
                generate_tokenizer=True,
                vocab_type="character-slot",
                vocab_file=_urls_to_filepaths(VOCAB_URL),
                slots_file=_urls_to_filepaths(SLOTS_URL),
            ),
            train_sampler=dict(
                CLS=SortedSliceSampler,
                batch_size=32,
                max_length=300000,
            ),
            valid_datapipe=dict(
                CLS=Speech2TextPipe,
            ),
            valid_sampler=dict(
                CLS=FixedBatchSizeBatchSampler,
                batch_size=1,
            ),
            test_datapipe=dict(
                CLS=Speech2TextPipe,
            ),
            test_sampler=dict(
                CLS=FixedBatchSizeBatchSampler,
                batch_size=1,
            ),
            downstream=dict(
                CLS=ModelWithSpecaug,
                model_cfg=dict(
                    CLS=RNNEncoder,
                    module="LSTM",
                    proj_size=1024,
                    hidden_size=[1024, 1024],
                    dropout=[0.2, 0.2],
                    layer_norm=[False, False],
                    proj=[False, False],
                    sample_rate=[1, 1],
                    sample_style="concat",
                    bidirectional=True,
                ),
                specaug_cfg=dict(
                    freq_mask_width_range=(0, 50),
                    num_freq_mask=4,
                    time_mask_width_range=(0, 40),
                    num_time_mask=2,
                ),
            ),
            task=dict(
                CLS=Speech2TextCTCTask,
                log_metrics=[
                    "wer",
                    "cer",
                    "slot_type_f1",
                    "slot_value_cer",
                    "slot_value_wer",
                    "slot_edit_f1_full",
                    "slot_edit_f1_part",
                ],
            ),
        )
    )
    @classmethod
    def setup(cls, **cfg):
        super().setup(**cfg)

    @default_cfg(
        **SuperbProblem.train.default_except(
            optimizer=dict(
                CLS="torch.optim.Adam",
                lr=1.0e-4,
            ),
            trainer=dict(
                total_steps=200000,
                log_step=100,
                eval_step=2000,
                save_step=500,
                gradient_clipping=1.0,
                gradient_accumulate_steps=1,
                valid_metric="slot_type_f1",
                valid_higher_better=True,
            ),
        )
    )
    @classmethod
    def train(cls, **cfg):
        super().train(**cfg)

    @default_cfg(**SuperbProblem.inference.default_cfg)
    @classmethod
    def inference(cls, **cfg):
        super().inference(**cfg)

    @default_cfg(
        **SuperbProblem.run.default_except(
            stages=["setup", "train", "inference"],
            start_stage="setup",
            final_stage="inference",
            setup=setup.default_cfg.deselect("workspace", "resume", "dryrun"),
            train=train.default_cfg.deselect("workspace", "resume", "dryrun"),
            inference=inference.default_cfg.deselect("workspace", "resume", "dryrun"),
        )
    )
    @classmethod
    def run(cls, **cfg):
        super().run(**cfg)