File size: 1,707 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""
The abstract Task

Authors
  * Leo 2022
"""

import abc
from collections import defaultdict
from typing import List

import torch

__all__ = ["Task"]


class Task(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def get_state(self):
        # self.model will be separately saved, do not save self.model.state_dict() here
        return {}

    def set_state(self, state: dict):
        pass

    def parse_cached_results(self, cached_results: List[dict]):
        keys = list(cached_results[0].keys())
        dol = defaultdict(list)
        for d in cached_results:
            assert sorted(keys) == sorted(list(d.keys()))
            for k, v in d.items():
                if isinstance(v, (tuple, list)):
                    dol[k].extend(v)
                else:
                    dol[k].append(v)
        return dict(dol)

    @abc.abstractmethod
    def predict(self):
        raise NotImplementedError

    def forward(self, mode: str, *args, **kwargs):
        return getattr(self, f"{mode}_step")(*args, **kwargs)

    def reduction(self, mode: str, *args, **kwargs):
        return getattr(self, f"{mode}_reduction")(*args, **kwargs)

    @abc.abstractmethod
    def train_step(self):
        raise NotImplementedError

    @abc.abstractmethod
    def valid_step(self):
        raise NotImplementedError

    @abc.abstractmethod
    def test_step(self):
        raise NotImplementedError

    @abc.abstractmethod
    def train_reduction(self):
        raise NotImplementedError

    @abc.abstractmethod
    def valid_reduction(self):
        raise NotImplementedError

    @abc.abstractmethod
    def test_reduction(self):
        raise NotImplementedError