File size: 7,606 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from __future__ import annotations

import logging
from typing import List

import torch

from s3prl import Logs, Output
from s3prl.nn.predictor_mockingjay import PredictorMockingjay as PredictorExample
from s3prl.nn.transformer_mockingjay import TransformerMockingjay as UpstreamExample

from . import Task

logger = logging.getLogger(__name__)


class FeatReconstructionTask(Task):
    """
    Attributes:
        upstream (torch.nn.Module): The upstream encoder (transformers, rnn, etc) that outputs `hidden_states`
        predictor (torch.nn.Module): The pre-training predictor that takes `hidden_states` as input and maps to the task target
        loss (torch.nn Loss Functions): The reconstruction loss (torch.nn.L1Loss, torch.nn.MSELoss, etc)
    """

    def __init__(
        self,
        upstream: UpstreamExample,
        predictor: PredictorExample,
        loss: torch.nn.L1Loss,
        loss_config: dict = {},
        **kwargs,
    ):
        """
        The input feature does not necessary have to be the same as the target feature.

        Args:
            upstream (Encoder)
            predictor (Projection NN)
            loss (reconstruction loss)
                feat_A -> upstream -> predictor -> feat_B
                loss(feat_A, feat_B)
        """

        super().__init__()
        self.upstream = upstream
        self.predictor = predictor
        self.loss = loss(**loss_config)

    def predict(
        self,
        x: torch.Tensor,
        label: torch.Tensor,
        label_mask: torch.BoolTensor = None,
        position_encoding: torch.Tensor = None,
        attention_mask: torch.LongTensor = None,
    ):
        """
        Args:
            x (torch.Tensor): source_feat - (batch_size, timestamps, input_size)
            label (torch.Tensor): target_feat - (batch_size, timestamps, output_size)
            label_mask (torch.BoolTensor): (batch_size, timestamps, output_size)
            position_encoding (torch.Tensor): (batch_size, timestamps, input_size)
            attention_mask (torch.LongTensor): (batch_size, timestamps)

        Return:
            hidden_states (torch.Tensor): (batch_size, timestamps, hidden_size)
            loss (torch.Tensor): scalar.
            prediction (torch.Tensor): (batch_size, timestamps, output_size)
        """
        if position_encoding is None and attention_mask is None:
            upstream_output: torch.Tensor = self.upstream(x)
        else:
            upstream_output: torch.Tensor = self.upstream(
                x, position_encoding, attention_mask
            )
        prediction: torch.Tensor = self.predictor(upstream_output).prediction

        if label_mask is None:
            reconstruction_loss = self.loss(prediction, label)
        else:
            assert label_mask.sum() > 0, "Without any masking, loss might go NaN."
            reconstruction_loss = self.loss(
                prediction.masked_select(label_mask), label.masked_select(label_mask)
            )

        return Output(
            loss=reconstruction_loss,
            hidden_states=upstream_output.hidden_states,
            prediction=prediction,
        )

    def _general_forward(
        self,
        x: torch.Tensor,
        label: torch.Tensor,
        label_mask: torch.BoolTensor = None,
        position_encoding: torch.Tensor = None,
        attention_mask: torch.LongTensor = None,
        unique_name: List[str] = None,
    ):
        loss, hidden_states, prediction = self.predict(
            x, label, label_mask, position_encoding, attention_mask
        ).slice(3)

        logs = Logs()
        logs.add_hidden_state("hidden_states", hidden_states)
        logs.add_hidden_state("prediction", prediction)

        return Output(
            loss=loss,
            prediction=prediction,
            label=label,
            unique_name=unique_name,
            logs=logs,
        )

    def _general_reduction(self, batch_results: list, on_epoch_end: bool = None):
        losses = []
        for batch_result in batch_results:
            losses.append(batch_result.loss)

        loss = (sum(losses) / len(losses)).item()

        logs = Logs()
        logs.add_scalar("loss", loss)

        return Output(
            logs=logs,
        )

    def train_step(
        self,
        x: torch.Tensor,
        label: torch.Tensor,
        label_mask: torch.BoolTensor = None,
        position_encoding: torch.Tensor = None,
        attention_mask: torch.LongTensor = None,
        unique_name: List[str] = None,
        **kwargs,
    ):
        """
        Each forward step in the training loop

        Args:
            source_feat (torch.Tensor): (batch_size, timestamps, input_size)
            target_feat (torch.Tensor): (batch_size, timestamps, output_size)
            label_mask (torch.BoolTensor): (batch_size, timestamps, output_size)
            pos_enc (torch.Tensor): (batch_size, timestamps, input_size)
            attn_mask (torch.LongTensor): (batch_size, timestamps)

        Return:
            hidden_states (torch.Tensor): (batch_size, timestamps, hidden_size)
            loss (torch.Tensor): scalar.
            prediction (torch.Tensor): (batch_size, timestamps, output_size)
        """
        return self._general_forward(
            x, label, label_mask, position_encoding, attention_mask, unique_name
        )

    def train_reduction(self, batch_results: list, on_epoch_end: bool = False):
        """
        After several forward steps, outputs should be collected untouched (but detaching the Tensors)
        into a list and passed as batch_results. This function examine the collected items and compute
        metrics across these batches. This function might be called in the middle of an epoch for quick
        logging, or after exactly an epoch to know the epoch level performance.

        Args:
            batch_results (List[cacheable version of the output of self.train_step])
            on_epoch_end (bool):
                usually you should keep the same behavior between sub-epoch and epoch level
                this parameter is here in case you need specific postprocessing which must
                only be done right on the end of an epoch

        Return:
            logs (List[Log]):
                a list of content to log onto any logger
                each content should be in the Log class format
        """
        return self._general_reduction(batch_results, on_epoch_end)

    def valid_step(
        self,
        x: torch.Tensor,
        label: torch.Tensor,
        label_mask: torch.BoolTensor = None,
        position_encoding: torch.Tensor = None,
        attention_mask: torch.LongTensor = None,
        unique_name: List[str] = None,
        **kwargs,
    ):
        return self._general_forward(
            x, label, label_mask, position_encoding, attention_mask, unique_name
        )

    def test_step(
        self,
        x: torch.Tensor,
        label: torch.Tensor,
        label_mask: torch.BoolTensor = None,
        position_encoding: torch.Tensor = None,
        attention_mask: torch.LongTensor = None,
        unique_name: List[str] = None,
        **kwargs,
    ):
        return self._general_forward(
            x, label, label_mask, position_encoding, attention_mask, unique_name
        )

    def valid_reduction(self, batch_results: list, on_epoch_end: bool = True):
        return self._general_reduction(batch_results, on_epoch_end)

    def test_reduction(self, batch_results: list, on_epoch_end: bool = True):
        return self._general_reduction(batch_results, on_epoch_end)