File size: 5,987 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
Speaker Verification with Softmax-based loss

Authors
  * Po-Han Chi 2021
  * Haibin Wu 2022
"""

import logging
from typing import List, Tuple

import torch
import torch.nn.functional as F
from tqdm import tqdm

from s3prl.dataio.encoder.category import CategoryEncoder
from s3prl.metric import accuracy, compute_eer, compute_minDCF
from s3prl.nn import amsoftmax, softmax

from . import Task

logger = logging.getLogger(__name__)


__all__ = ["SpeakerClassifier", "SpeakerVerification"]


class SpeakerClassifier(torch.nn.Module):
    """
    Attributes:
        input_size: int
        output_size: int
    """

    def __init__(self, input_size=3, output_size=4):
        super().__init__()
        self._input_size = input_size
        self._output_size = output_size

    @property
    def input_size(self):
        return self._input_size

    @property
    def output_size(self):
        return self._output_size

    def forward(self, x, x_len):
        """
        Args:
            x (torch.Tensor): (batch_size, timestemps, input_size)
            x_len (torch.LongTensor): (batch_size, )

        Return:
            output (torch.Tensor): (batch_size, output_size)
        """
        assert x.size(-1) == self.input_size
        output = torch.randn(x.size(0), self.output_size)
        assert output


class SpeakerVerification(Task):
    """
    model.output_size should match len(categories)

    Args:
        model (SpeakerClassifier):
            actual model or a callable config for the model
        categories (dict[str]):
            each key in the Dictionary is the final prediction content in str.
            use categories[key] to encode as numeric label
        test_trials (List[Tuple[int, str, str]]):
            each tuple in the list consists of (label, enroll_utt, test_utt)
        loss_type (str): softmax or amsoftmax
        loss_conf (dict): arguments for the loss_type class
    """

    def __init__(
        self,
        model: SpeakerClassifier,
        category: CategoryEncoder,
        test_trials: List[Tuple[int, str, str]] = None,
        loss_type: str = "amsoftmax",
        loss_conf: dict = None,
    ):
        super().__init__()
        self.model = model
        self.category = category
        self.trials = test_trials

        if loss_type == "amsoftmax":
            loss_cls = amsoftmax
        elif loss_type == "softmax":
            loss_cls = softmax
        else:
            raise ValueError(f"Unsupported loss_type {loss_type}")

        self.loss: torch.nn.Module = loss_cls(
            input_size=self.model.output_size,
            output_size=len(self.category),
            **loss_conf,
        )
        assert self.loss.output_size == len(category)

    def get_state(self):
        return {
            "loss_state": self.loss.state_dict(),
        }

    def set_state(self, state: dict):
        self.loss.load_state_dict(state["loss_state"])

    def predict(self, x: torch.Tensor, x_len: torch.LongTensor):
        """
        Args:
            x (torch.Tensor): (batch_size, timestamps, input_size)
            x_len (torch.LongTensor): (batch_size, )

        Return:
            torch.Tensor

            (batch_size, output_size)
        """
        spk_embeddings = self.model(x, x_len)
        return spk_embeddings

    def train_step(
        self,
        x: torch.Tensor,
        x_len: torch.LongTensor,
        class_id: torch.LongTensor,
        unique_name: List[str],
        _dump_dir: str = None,
    ):
        spk_embeddings = self.predict(x, x_len)
        loss, logits = self.loss(spk_embeddings, class_id)
        prediction = [index for index in logits.argmax(dim=-1).detach().cpu().tolist()]

        cacheable = dict(
            loss=loss.detach().cpu().item(),
            class_id=class_id.detach().cpu().tolist(),
            prediction=prediction,
            unique_name=unique_name,
        )

        return loss, cacheable

    def train_reduction(self, cached_results: list, _dump_dir: str = None):
        results = self.parse_cached_results(cached_results)
        acc = accuracy(results["prediction"], results["class_id"])
        loss = torch.FloatTensor(results["loss"]).mean().item()

        return dict(
            loss=loss,
            accuracy=acc,
        )

    def test_step(
        self,
        x: torch.Tensor,
        x_len: torch.LongTensor,
        unique_name: List[str],
        _dump_dir: str,
    ):
        """
        Args:
            x (torch.Tensor): (batch_size, timestamps, input_size)
            x_len: torch.LongTensor
            unique_name (List[str])

        Return:
            unique_name (List[str])
            output (torch.Tensor):
                speaker embeddings corresponding to unique_name
        """
        spk_embeddings = self.predict(x, x_len)

        cacheable = dict(
            unique_name=unique_name.tolist(),
            spk_embedding=spk_embeddings.detach().cpu().unbind(dim=0),
        )
        return None, cacheable

    def test_reduction(self, cached_results: List[dict], _dump_dir: str):
        results = self.parse_cached_results(cached_results)
        embeddings = {}
        for name, emb in zip(results["unique_name"], results["spk_embedding"]):
            embeddings[name] = emb

        trials = self.trials
        scores = []
        labels = []
        for label, enroll, test in tqdm(trials, desc="Test Scoring", total=len(trials)):
            enroll_embd = embeddings[enroll]
            test_embd = embeddings[test]
            score = F.cosine_similarity(enroll_embd, test_embd, dim=0).item()
            scores.append(score)
            labels.append(label)

        EER, EERthreshold = compute_eer(labels, scores)

        minDCF, minDCFthreshold = compute_minDCF(labels, scores, p_target=0.01)

        return dict(
            EER=EER,
            EERthreshold=EERthreshold.item(),
            minDCF=minDCF,
            minDCF_threshold=minDCFthreshold,
        )