File size: 5,987 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
"""
Speaker Verification with Softmax-based loss
Authors
* Po-Han Chi 2021
* Haibin Wu 2022
"""
import logging
from typing import List, Tuple
import torch
import torch.nn.functional as F
from tqdm import tqdm
from s3prl.dataio.encoder.category import CategoryEncoder
from s3prl.metric import accuracy, compute_eer, compute_minDCF
from s3prl.nn import amsoftmax, softmax
from . import Task
logger = logging.getLogger(__name__)
__all__ = ["SpeakerClassifier", "SpeakerVerification"]
class SpeakerClassifier(torch.nn.Module):
"""
Attributes:
input_size: int
output_size: int
"""
def __init__(self, input_size=3, output_size=4):
super().__init__()
self._input_size = input_size
self._output_size = output_size
@property
def input_size(self):
return self._input_size
@property
def output_size(self):
return self._output_size
def forward(self, x, x_len):
"""
Args:
x (torch.Tensor): (batch_size, timestemps, input_size)
x_len (torch.LongTensor): (batch_size, )
Return:
output (torch.Tensor): (batch_size, output_size)
"""
assert x.size(-1) == self.input_size
output = torch.randn(x.size(0), self.output_size)
assert output
class SpeakerVerification(Task):
"""
model.output_size should match len(categories)
Args:
model (SpeakerClassifier):
actual model or a callable config for the model
categories (dict[str]):
each key in the Dictionary is the final prediction content in str.
use categories[key] to encode as numeric label
test_trials (List[Tuple[int, str, str]]):
each tuple in the list consists of (label, enroll_utt, test_utt)
loss_type (str): softmax or amsoftmax
loss_conf (dict): arguments for the loss_type class
"""
def __init__(
self,
model: SpeakerClassifier,
category: CategoryEncoder,
test_trials: List[Tuple[int, str, str]] = None,
loss_type: str = "amsoftmax",
loss_conf: dict = None,
):
super().__init__()
self.model = model
self.category = category
self.trials = test_trials
if loss_type == "amsoftmax":
loss_cls = amsoftmax
elif loss_type == "softmax":
loss_cls = softmax
else:
raise ValueError(f"Unsupported loss_type {loss_type}")
self.loss: torch.nn.Module = loss_cls(
input_size=self.model.output_size,
output_size=len(self.category),
**loss_conf,
)
assert self.loss.output_size == len(category)
def get_state(self):
return {
"loss_state": self.loss.state_dict(),
}
def set_state(self, state: dict):
self.loss.load_state_dict(state["loss_state"])
def predict(self, x: torch.Tensor, x_len: torch.LongTensor):
"""
Args:
x (torch.Tensor): (batch_size, timestamps, input_size)
x_len (torch.LongTensor): (batch_size, )
Return:
torch.Tensor
(batch_size, output_size)
"""
spk_embeddings = self.model(x, x_len)
return spk_embeddings
def train_step(
self,
x: torch.Tensor,
x_len: torch.LongTensor,
class_id: torch.LongTensor,
unique_name: List[str],
_dump_dir: str = None,
):
spk_embeddings = self.predict(x, x_len)
loss, logits = self.loss(spk_embeddings, class_id)
prediction = [index for index in logits.argmax(dim=-1).detach().cpu().tolist()]
cacheable = dict(
loss=loss.detach().cpu().item(),
class_id=class_id.detach().cpu().tolist(),
prediction=prediction,
unique_name=unique_name,
)
return loss, cacheable
def train_reduction(self, cached_results: list, _dump_dir: str = None):
results = self.parse_cached_results(cached_results)
acc = accuracy(results["prediction"], results["class_id"])
loss = torch.FloatTensor(results["loss"]).mean().item()
return dict(
loss=loss,
accuracy=acc,
)
def test_step(
self,
x: torch.Tensor,
x_len: torch.LongTensor,
unique_name: List[str],
_dump_dir: str,
):
"""
Args:
x (torch.Tensor): (batch_size, timestamps, input_size)
x_len: torch.LongTensor
unique_name (List[str])
Return:
unique_name (List[str])
output (torch.Tensor):
speaker embeddings corresponding to unique_name
"""
spk_embeddings = self.predict(x, x_len)
cacheable = dict(
unique_name=unique_name.tolist(),
spk_embedding=spk_embeddings.detach().cpu().unbind(dim=0),
)
return None, cacheable
def test_reduction(self, cached_results: List[dict], _dump_dir: str):
results = self.parse_cached_results(cached_results)
embeddings = {}
for name, emb in zip(results["unique_name"], results["spk_embedding"]):
embeddings[name] = emb
trials = self.trials
scores = []
labels = []
for label, enroll, test in tqdm(trials, desc="Test Scoring", total=len(trials)):
enroll_embd = embeddings[enroll]
test_embd = embeddings[test]
score = F.cosine_similarity(enroll_embd, test_embd, dim=0).item()
scores.append(score)
labels.append(label)
EER, EERthreshold = compute_eer(labels, scores)
minDCF, minDCFthreshold = compute_minDCF(labels, scores, p_target=0.01)
return dict(
EER=EER,
EERthreshold=EERthreshold.item(),
minDCF=minDCF,
minDCF_threshold=minDCFthreshold,
)
|