File size: 6,389 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
Utterance Classification Tasks

Authors
  * Leo 2022
"""

import logging
from typing import List

import numpy as np
import torch
import torch.nn.functional as F

from s3prl.dataio.encoder.category import CategoryEncoder, CategoryEncoders
from s3prl.metric import accuracy

from . import Task

logger = logging.getLogger(__name__)

__all__ = [
    "UtteranceClassifierExample",
    "UtteranceClassificationTask",
]


class UtteranceClassifierExample(torch.nn.Module):
    """
    Attributes:
        input_size: int
        output_size: int
    """

    def __init__(self, input_size=3, output_size=4):
        super().__init__()
        self._input_size = input_size
        self._output_size = output_size

    @property
    def input_size(self):
        return self._input_size

    @property
    def output_size(self):
        return self._output_size

    def forward(self, x, x_len):
        """
        Args:
            x (torch.Tensor): (batch_size, timestemps, input_size)
            x_len (torch.LongTensor): (batch_size, )

        Return:
            output (torch.Tensor): (batch_size, output_size)
        """
        assert x.size(-1) == self.input_size
        output = torch.randn(x.size(0), self.output_size)
        assert output


class UtteranceClassificationTask(Task):
    """
    Attributes:
        input_size (int): defined by model.input_size
        output_size (int): defined by len(categories)
    """

    def __init__(self, model: UtteranceClassifierExample, category: CategoryEncoder):
        """
        model.output_size should match len(categories)

        Args:
            model (UtteranceClassifier)
            category:
                encode: str -> int
                decode: int -> str
                __len__: -> int
        """

        super().__init__()
        self.model = model
        self.category = category
        assert self.model.output_size == len(category)

    def predict(self, x: torch.Tensor, x_len: torch.LongTensor):
        """
        Args:
            x (torch.Tensor): (batch_size, timestamps, input_size)
            x_len (torch.LongTensor): (batch_size, )

        Return:
            logits (torch.Tensor): (batch_size, output_size)
            prediction (list): prediction strings
        """
        logits: torch.Tensor = self.model(x, x_len)
        predictions = [
            self.category.decode(index)
            for index in logits.argmax(dim=-1).detach().cpu().tolist()
        ]
        return logits, predictions

    def forward(
        self,
        _mode: str,
        x: torch.Tensor,
        x_len: torch.LongTensor,
        class_id: torch.LongTensor,
        label: List[str],
        unique_name: List[str],
        _dump_dir: str = None,
    ):
        logits, prediction = self.predict(x, x_len)
        loss = F.cross_entropy(logits, class_id)

        cacheable = dict(
            loss=loss.detach().cpu(),
            prediction=prediction,
            label=[self.category.decode(idx) for idx in class_id],
            unique_name=unique_name,
        )

        return loss, cacheable

    def reduction(self, _mode: str, cached_results: List[dict], _dump_dir: str = None):
        results = self.parse_cached_results(cached_results)
        predictions = results["prediction"]
        labels = results["label"]
        losses = results["loss"]

        acc = accuracy(predictions, labels)
        loss = (sum(losses) / len(losses)).item()

        return dict(
            loss=loss,
            accuracy=acc,
        )


class UtteranceMultiClassClassificationTask(Task):
    def __init__(self, model: UtteranceClassifierExample, categories: CategoryEncoders):
        super().__init__()
        self.model = model
        self.categories = categories
        assert self.model.output_size == len(categories)

    def predict(self, x: torch.Tensor, x_len: torch.LongTensor):
        """
        Args:
            x (torch.Tensor): (batch_size, timestamps, input_size)
            x_len (torch.LongTensor): (batch_size, )

        Return:
            logit (torch.Tensor): List[(batch_size, sub_output_size)]
            prediction (np.array): (batch_size, num_category)
        """
        logits: torch.Tensor = self.model(x, x_len)

        logit_start = 0
        sub_logits, sub_predictions = [], []
        for category in self.categories:
            logit_end = logit_start + len(category)
            sub_logit = logits[:, logit_start:logit_end]
            sub_logits.append(sub_logit)
            sub_predictions.append(
                [
                    category.decode(index)
                    for index in sub_logit.argmax(dim=-1).detach().cpu().tolist()
                ]
            )
            logit_start = logit_end
        prediction = np.array(sub_predictions, dtype="object").T

        return sub_logits, prediction

    def forward(
        self,
        _mode: str,
        x: torch.Tensor,
        x_len: torch.LongTensor,
        class_ids: torch.LongTensor,
        labels: np.ndarray,
        unique_name: List[str],
        _dump_dir: str = None,
    ):
        """
        Args:
            x: torch.Tensor, (batch_size, timestamps, input_size)
            x_len: torch.LongTensor, (batch_size)
            class_ids: torch.LongTensor, (batch_size, num_category)
            labels: np.ndarray, (batch_size, num_category)

        Return:
            loss: torch.Tensor
            prediction: np.ndarray
            label: np.ndarray
        """
        logit, prediction = self.predict(x, x_len)
        loss = sum(
            [
                F.cross_entropy(sub_logit, class_id)
                for sub_logit, class_id in zip(logit, class_ids.T)
            ]
        )

        cacheable = dict(
            loss=loss.detach().cpu(),
            prediction=prediction.tolist(),
            label=labels.tolist(),
            unique_name=unique_name,
        )

        return loss, cacheable

    def reduction(self, _mode: str, cached_results: List[dict], _dump_dir: str = None):
        results = self.parse_cached_results(cached_results)
        losses = results["loss"]
        predictions = results["prediction"]
        labels = results["label"]

        acc = accuracy(predictions, labels)
        loss = (sum(losses) / len(losses)).item()

        return dict(
            loss=loss,
            accuracy=acc,
        )