File size: 6,389 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
"""
Utterance Classification Tasks
Authors
* Leo 2022
"""
import logging
from typing import List
import numpy as np
import torch
import torch.nn.functional as F
from s3prl.dataio.encoder.category import CategoryEncoder, CategoryEncoders
from s3prl.metric import accuracy
from . import Task
logger = logging.getLogger(__name__)
__all__ = [
"UtteranceClassifierExample",
"UtteranceClassificationTask",
]
class UtteranceClassifierExample(torch.nn.Module):
"""
Attributes:
input_size: int
output_size: int
"""
def __init__(self, input_size=3, output_size=4):
super().__init__()
self._input_size = input_size
self._output_size = output_size
@property
def input_size(self):
return self._input_size
@property
def output_size(self):
return self._output_size
def forward(self, x, x_len):
"""
Args:
x (torch.Tensor): (batch_size, timestemps, input_size)
x_len (torch.LongTensor): (batch_size, )
Return:
output (torch.Tensor): (batch_size, output_size)
"""
assert x.size(-1) == self.input_size
output = torch.randn(x.size(0), self.output_size)
assert output
class UtteranceClassificationTask(Task):
"""
Attributes:
input_size (int): defined by model.input_size
output_size (int): defined by len(categories)
"""
def __init__(self, model: UtteranceClassifierExample, category: CategoryEncoder):
"""
model.output_size should match len(categories)
Args:
model (UtteranceClassifier)
category:
encode: str -> int
decode: int -> str
__len__: -> int
"""
super().__init__()
self.model = model
self.category = category
assert self.model.output_size == len(category)
def predict(self, x: torch.Tensor, x_len: torch.LongTensor):
"""
Args:
x (torch.Tensor): (batch_size, timestamps, input_size)
x_len (torch.LongTensor): (batch_size, )
Return:
logits (torch.Tensor): (batch_size, output_size)
prediction (list): prediction strings
"""
logits: torch.Tensor = self.model(x, x_len)
predictions = [
self.category.decode(index)
for index in logits.argmax(dim=-1).detach().cpu().tolist()
]
return logits, predictions
def forward(
self,
_mode: str,
x: torch.Tensor,
x_len: torch.LongTensor,
class_id: torch.LongTensor,
label: List[str],
unique_name: List[str],
_dump_dir: str = None,
):
logits, prediction = self.predict(x, x_len)
loss = F.cross_entropy(logits, class_id)
cacheable = dict(
loss=loss.detach().cpu(),
prediction=prediction,
label=[self.category.decode(idx) for idx in class_id],
unique_name=unique_name,
)
return loss, cacheable
def reduction(self, _mode: str, cached_results: List[dict], _dump_dir: str = None):
results = self.parse_cached_results(cached_results)
predictions = results["prediction"]
labels = results["label"]
losses = results["loss"]
acc = accuracy(predictions, labels)
loss = (sum(losses) / len(losses)).item()
return dict(
loss=loss,
accuracy=acc,
)
class UtteranceMultiClassClassificationTask(Task):
def __init__(self, model: UtteranceClassifierExample, categories: CategoryEncoders):
super().__init__()
self.model = model
self.categories = categories
assert self.model.output_size == len(categories)
def predict(self, x: torch.Tensor, x_len: torch.LongTensor):
"""
Args:
x (torch.Tensor): (batch_size, timestamps, input_size)
x_len (torch.LongTensor): (batch_size, )
Return:
logit (torch.Tensor): List[(batch_size, sub_output_size)]
prediction (np.array): (batch_size, num_category)
"""
logits: torch.Tensor = self.model(x, x_len)
logit_start = 0
sub_logits, sub_predictions = [], []
for category in self.categories:
logit_end = logit_start + len(category)
sub_logit = logits[:, logit_start:logit_end]
sub_logits.append(sub_logit)
sub_predictions.append(
[
category.decode(index)
for index in sub_logit.argmax(dim=-1).detach().cpu().tolist()
]
)
logit_start = logit_end
prediction = np.array(sub_predictions, dtype="object").T
return sub_logits, prediction
def forward(
self,
_mode: str,
x: torch.Tensor,
x_len: torch.LongTensor,
class_ids: torch.LongTensor,
labels: np.ndarray,
unique_name: List[str],
_dump_dir: str = None,
):
"""
Args:
x: torch.Tensor, (batch_size, timestamps, input_size)
x_len: torch.LongTensor, (batch_size)
class_ids: torch.LongTensor, (batch_size, num_category)
labels: np.ndarray, (batch_size, num_category)
Return:
loss: torch.Tensor
prediction: np.ndarray
label: np.ndarray
"""
logit, prediction = self.predict(x, x_len)
loss = sum(
[
F.cross_entropy(sub_logit, class_id)
for sub_logit, class_id in zip(logit, class_ids.T)
]
)
cacheable = dict(
loss=loss.detach().cpu(),
prediction=prediction.tolist(),
label=labels.tolist(),
unique_name=unique_name,
)
return loss, cacheable
def reduction(self, _mode: str, cached_results: List[dict], _dump_dir: str = None):
results = self.parse_cached_results(cached_results)
losses = results["loss"]
predictions = results["prediction"]
labels = results["label"]
acc = accuracy(predictions, labels)
loss = (sum(losses) / len(losses)).item()
return dict(
loss=loss,
accuracy=acc,
)
|