File size: 8,506 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# -*- coding: utf-8 -*- #
"""*********************************************************************************************"""
# FileName [ utils/audio.py ]
# Synopsis [ audio processing functions ]
# Author [ Andy T. Liu (Andi611) ]
# Copyright [ Copyleft(c), Speech Lab, NTU, Taiwan ]
# Reference 0 [ https://github.com/andi611/TTS-Tacotron-Pytorch ]
# Reference 1 [ https://github.com/Alexander-H-Liu/End-to-end-ASR-Pytorch ]
# Reference 2 [ https://groups.google.com/forum/#!msg/librosa/V4Z1HpTKn8Q/1-sMpjxjCSoJ ]
"""*********************************************************************************************"""
###############
# IMPORTATION #
###############
import random
import numpy as np
#-------------#
import librosa
from scipy import signal
#-------------#
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt
from matplotlib.colors import SymLogNorm
#-------------#
import warnings
warnings.filterwarnings("ignore")
# NOTE: there are warnings for MFCC extraction due to librosa's issue
##################
# AUDIO SETTINGS #
##################
sample_rate = 16000
"""
For feature == 'fbank' or 'mfcc'
"""
num_mels = 80 # int, dimension of feature
num_mfcc = 13 # int, number of MFCCs
window_size = 25 # int, window size for FFT (ms)
stride = 10 # int, window stride for FFT
"""
For feature == 'mel' or 'linear'
"""
num_freq = 1025
frame_length_ms = 50
frame_shift_ms = 12.5
preemphasis = 0.97
min_level_db = -100
ref_level_db = 20
hop_length = 250
griffin_lim_iters = 16
power = 1.5 # Power to raise magnitudes to prior to Griffin-Lim
#############################
# SPECTROGRAM UTILS FORWARD #
#############################
def _stft_parameters(sample_rate):
n_fft = (num_freq - 1) * 2
hop_length = int(frame_shift_ms / 1000 * sample_rate)
win_length = int(frame_length_ms / 1000 * sample_rate)
return n_fft, hop_length, win_length
def _linear_to_mel(spectrogram, sample_rate):
_mel_basis = _build_mel_basis(sample_rate)
return np.dot(_mel_basis, spectrogram)
def _build_mel_basis(sample_rate):
n_fft = (num_freq - 1) * 2
return librosa.filters.mel(sample_rate, n_fft, n_mels=num_mels)
def _preemphasis(x):
return signal.lfilter([1, -preemphasis], [1], x)
def _amp_to_db(x):
return 20 * np.log10(np.maximum(1e-5, x))
def _normalize(S):
return np.clip((S - min_level_db) / -min_level_db, 0, 1)
def _stft(y, sr):
n_fft, hop_length, win_length = _stft_parameters(sr)
return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
#############################
# SPECTROGRAM UTILS BACKWARD #
#############################
def _denormalize(S):
return (np.clip(S, 0, 1) * -min_level_db) + min_level_db
def _db_to_amp(x):
return np.power(10.0, x * 0.05)
def inv_preemphasis(x):
return signal.lfilter([1], [1, -preemphasis], x)
def _griffin_lim(S, sr):
"""
librosa implementation of Griffin-Lim
Based on https://github.com/librosa/librosa/issues/434
"""
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = _istft(S_complex * angles, sr)
for _ in range(griffin_lim_iters):
angles = np.exp(1j * np.angle(_stft(y ,sr)))
y = _istft(S_complex * angles, sr)
return y
def _istft(y, sr):
_, hop_length, win_length = _stft_parameters(sr)
return librosa.istft(y, hop_length=hop_length, win_length=win_length)
###################
# MEL SPECTROGRAM #
###################
"""
Compute the mel-scale spectrogram from the wav.
"""
def melspectrogram(y, sr):
D = _stft(_preemphasis(y), sr)
S = _amp_to_db(_linear_to_mel(np.abs(D), sr))
return _normalize(S)
###############
# SPECTROGRAM #
###############
"""
Compute the linear-scale spectrogram from the wav.
"""
def spectrogram(y, sr):
D = _stft(_preemphasis(y), sr)
S = _amp_to_db(np.abs(D)) - ref_level_db
return _normalize(S)
###################
# INV SPECTROGRAM #
###################
"""
Converts spectrogram to waveform using librosa
"""
def inv_spectrogram(spectrogram, sr=16000):
S = _db_to_amp(_denormalize(spectrogram) + ref_level_db) # Convert back to linear
return inv_preemphasis(_griffin_lim(S ** power, sr)) # Reconstruct phase
###################
# EXTRACT FEATURE #
###################
# Acoustic Feature Extraction
# Parameters
# - input file : str, audio file path
# - feature : str, fbank or mfcc
# - delta : bool, append delta
# - delta_delta : bool, append delta delta
# - cmvn : bool, apply CMVN on feature
# - save_feature: str, if given, store feature to the path and return len(feature)
# Return
# acoustic features with shape (time step, dim)
def extract_feature(input_file, feature='fbank', delta=False, delta_delta=False, cmvn=True, save_feature=None):
y, sr = librosa.load(input_file, sr=sample_rate)
if feature == 'fbank':
ws = int(sr*0.001*window_size)
st = int(sr*0.001*stride)
feat = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=num_mels,
n_fft=ws, hop_length=st)
feat = np.log(feat + 1e-6) # log-scaled
elif feature == 'mfcc':
ws = int(sr*0.001*window_size)
st = int(sr*0.001*stride)
feat = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=num_mfcc,
n_fft=ws, hop_length=st)
feat[0] = librosa.feature.rms(y, hop_length=st, frame_length=ws)
elif feature == 'mel':
# feat = melspectrogram(y, sr) # deprecated
n_fft, hop_length, win_length = _stft_parameters(sr)
feat = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=num_mels,
n_fft=n_fft, hop_length=hop_length, win_length=win_length)
feat = np.log(feat + 1e-6) # log-scaled
elif feature == 'linear':
feat = spectrogram(y, sr)
else:
raise ValueError('Unsupported Acoustic Feature: ' + feature)
# Apply delta
feat = [feat]
if delta and feature != 'linear':
feat.append(librosa.feature.delta(feat[0]))
if delta_delta and feature != 'linear':
feat.append(librosa.feature.delta(feat[0], order=2))
feat = np.concatenate(feat, axis=0)
if feature == 'linear': assert(np.shape(feat)[0] == num_freq)
if cmvn:
feat = (feat - feat.mean(axis=1)[:,np.newaxis]) / (feat.std(axis=1)+1e-16)[:,np.newaxis]
if save_feature is not None:
tmp = np.swapaxes(feat, 0, 1).astype('float32')
np.save(save_feature,tmp)
return len(tmp)
else:
return np.swapaxes(feat, 0, 1).astype('float32')
#####################
# SAVE FIG TO NUMPY #
#####################
def _save_figure_to_numpy(fig):
# save it to a numpy array.
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data.transpose(2, 0, 1) # (Channel, Height, Width)
#############################
# PLOT SPECTROGRAM TO NUMPY #
#############################
def plot_spectrogram_to_numpy(spectrogram):
spectrogram = spectrogram.transpose(1, 0)
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = _save_figure_to_numpy(fig)
plt.close()
return data
####################
# PLOT SPECTROGRAM #
####################
def plot_spectrogram(spec, path):
spec = spec.transpose(1, 0) # (seq_len, feature_dim) -> (feature_dim, seq_len)
plt.gcf().clear()
plt.figure(figsize=(12, 3))
plt.imshow(spec, aspect="auto", origin="lower")
plt.colorbar()
plt.tight_layout()
plt.savefig(path, dpi=300, format="png")
plt.close()
####################
# PLOT EMBEDDING #
####################
def plot_embedding(spec, path):
spec = spec.transpose(1, 0) # (seq_len, feature_dim) -> (feature_dim, seq_len)
plt.gcf().clear()
plt.figure(figsize=(12, 3))
plt.pcolormesh(spec, norm=SymLogNorm(linthresh=1e-3))
plt.colorbar()
plt.tight_layout()
plt.savefig(path, dpi=300, format="png")
plt.close()
def plot_attention(attn, path):
fig = plt.figure(figsize=(5, 5))
plt.imshow(attn)
plt.savefig(path, format='png')
plt.close()
|