File size: 10,963 Bytes
0b32ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import logging
import os
import shutil
import tempfile
import traceback
from pathlib import Path
from subprocess import check_call
import pytest
import torch
from filelock import FileLock
from s3prl.nn import Featurizer, S3PRLUpstream
from s3prl.util.download import _urls_to_filepaths
from s3prl.util.pseudo_data import get_pseudo_wavs
logger = logging.getLogger(__name__)
TEST_MORE_ITER = 2
TRAIN_MORE_ITER = 5
SAMPLE_RATE = 16000
ATOL = 0.01
MAX_LENGTH_DIFF = 3
EXTRA_SHORT_SEC = 0.05
EXTRACTED_GT_DIR = Path(__file__).parent.parent / "sample_hidden_states"
S3PRL_HF_SAMPLE_HS = "https://huggingface.co/datasets/s3prl/sample_hidden_states"
# Expect the following directory structure:
#
# -- s3prl/ (repository root)
# ---- s3prl/ (package root)
# ---- test/
# ------- test_upstream.py
# ---- sample_hidden_states/
def _prepare_sample_hidden_states():
lock_file = Path(__file__).parent.parent / "sample_hidden_states.lock"
with FileLock(str(lock_file)):
# NOTE: home variable is necessary for git lfs to work
env = dict(os.environ)
if not "HOME" in env:
env["HOME"] = Path.home()
if not EXTRACTED_GT_DIR.is_dir():
with tempfile.TemporaryDirectory() as tempdir:
tempdir = Path(tempdir)
tempdir.mkdir(exist_ok=True, parents=True)
logger.info("Downloading extracted sample hidden states...")
check_call("git lfs install".split(), cwd=tempdir, env=env)
check_call(
f"git clone {S3PRL_HF_SAMPLE_HS}".split(),
cwd=tempdir,
env=env,
)
shutil.move(
str(tempdir / "sample_hidden_states"), str(EXTRACTED_GT_DIR.parent)
)
else:
logger.info(f"{EXTRACTED_GT_DIR} exists. Perform git pull...")
check_call(
f"git pull {S3PRL_HF_SAMPLE_HS} main".split(),
cwd=EXTRACTED_GT_DIR,
env=env,
)
try:
lock_file.unlink()
except FileNotFoundError:
pass
def _extract_feat(
model: S3PRLUpstream,
seed: int = 0,
**pseudo_wavs_args,
):
wavs, wavs_len = get_pseudo_wavs(seed=seed, padded=True, **pseudo_wavs_args)
all_hs, all_lens = model(wavs, wavs_len)
return all_hs
def _all_hidden_states_same(hs1, hs2):
for h1, h2 in zip(hs1, hs2):
if h1.size(1) != h2.size(1):
length_diff = abs(h1.size(1) - h2.size(1))
assert length_diff <= MAX_LENGTH_DIFF, f"{length_diff} > {MAX_LENGTH_DIFF}"
min_seqlen = min(h1.size(1), h2.size(1))
h1 = h1[:, :min_seqlen, :]
h2 = h2[:, :min_seqlen, :]
assert torch.allclose(h1, h2, atol=ATOL)
def _load_ground_truth(name: str):
source = f"{EXTRACTED_GT_DIR}/{name}.pt"
if source.startswith("http"):
path = _urls_to_filepaths(source)
else:
path = source
return torch.load(path)
def _compare_with_extracted(name: str):
model = S3PRLUpstream(name)
model.eval()
with torch.no_grad():
hs = _extract_feat(model)
hs_gt = _load_ground_truth(name)
_all_hidden_states_same(hs, hs_gt)
for i in range(TEST_MORE_ITER):
more_hs = _extract_feat(model)
for h1, h2 in zip(hs, more_hs):
assert torch.allclose(
h1, h2
), "should have deterministic representation in eval mode"
for i in range(TEST_MORE_ITER):
more_hs = _extract_feat(model, seed=i + 1)
assert len(hs) == len(
more_hs
), "should have deterministic num_layer in eval mode"
model.train()
for i in range(TRAIN_MORE_ITER):
more_hs = _extract_feat(model, seed=i + 1)
assert len(hs) == len(
more_hs
), "should have deterministic num_layer in train mode"
def _test_forward_backward(name: str, **pseudo_wavs_args):
"""
Test the upstream with the name: 'name' can successfully forward and backward
"""
with torch.autograd.set_detect_anomaly(True):
model = S3PRLUpstream(name)
hs = _extract_feat(model, **pseudo_wavs_args)
h_sum = 0
for h in hs:
h_sum = h_sum + h.sum()
h_sum.backward()
def _filter_options(options: list):
options = [
name
for name in options
if (not name == "customized_upstream")
and (
not "mos" in name
) # mos models do not have hidden_states key. They only return a single mos score
and (
not "stft_mag" in name
) # stft_mag upstream must past the config file currently and is not so important. So, skip the test now
and (
not "pase" in name
) # pase_plus needs lots of dependencies and is difficult to be tested and is not very worthy today
and (
not name == "xls_r_1b"
) # skip due to too large model, too long download time
and (
not name == "xls_r_2b"
) # skip due to too large model, too long download time
and (
not name in ["ast", "ssast_patch_base", "ssast_frame_base"]
) # FIXME: remove timm dependency
and (not name == "vggish") # FIXME: remove resampy dependency
and (not name == "byol_s_cvt") # FIXME: remove einops dependency
and (not "lighthubert" in name) # FIXME: solve the random subnet issue
and (not name == "passt_hop160base2lvl") # too huge memory usage
and (not name == "passt_hop160base2lvlmel") # too huge memory usage
and (not name == "passt_hop100base2lvl") # too huge memory usage
and (not name == "passt_hop100base2lvlmel") # too huge memory usage
]
options = [option for option in options if "passt" in option]
return options
"""
Test cases ensure that all upstreams are working and are same with pre-extracted features
"""
def _test_specific_upstream(name: str):
_compare_with_extracted(name)
_test_forward_backward(
name, min_secs=EXTRA_SHORT_SEC, max_secs=EXTRA_SHORT_SEC, n=1
)
_test_forward_backward(
name, min_secs=EXTRA_SHORT_SEC, max_secs=EXTRA_SHORT_SEC, n=2
)
_test_forward_backward(name, min_secs=EXTRA_SHORT_SEC, max_secs=1, n=3)
@pytest.mark.upstream
@pytest.mark.parametrize(
"name",
[
"apc",
"audio_albert",
"fbank",
"mel",
"modified_cpc",
"data2vec",
"decoar_layers",
"decoar2",
"distilhubert",
# "espnet_hubert_base_iter1", # espnet will be tested separately due to complex dependency
"hubert",
"lighthubert_base",
"mockingjay",
"npc",
"discretebert",
"tera",
"unispeech_sat_base",
"vq_apc",
"vq_wav2vec",
"wav2vec",
"wav2vec2",
"wavlm",
],
)
def test_common_upstream(name):
if "espnet" in name:
try:
import espnet
except:
logger.info("Skip ESPNet upstream test cases if espnet is not installed")
return
_prepare_sample_hidden_states()
_test_specific_upstream(name)
@pytest.mark.upstream
def test_specific_upstream(upstream_names: str):
_prepare_sample_hidden_states()
if upstream_names is not None:
options = upstream_names.split(",")
tracebacks = []
for name in options:
logger.info(f"Testing upstream: '{name}'")
try:
_test_specific_upstream(name)
except Exception as e:
logger.error(f"{name}\n{traceback.format_exc()}")
tb = traceback.format_exc()
tracebacks.append((name, tb))
if len(tracebacks) > 0:
for name, tb in tracebacks:
logger.error(f"Error in {name}:\n{tb}")
logger.error(f"All failed models:\n{[name for name, _ in tracebacks]}")
assert False
@pytest.mark.upstream
@pytest.mark.slow
def test_upstream_with_extracted(upstream_names: str):
_prepare_sample_hidden_states()
if upstream_names is not None:
options = upstream_names.split(",")
else:
options = S3PRLUpstream.available_names(only_registered_ckpt=True)
options = _filter_options(options)
options = sorted(options)
tracebacks = []
for name in options:
logger.info(f"Testing upstream: '{name}'")
try:
_compare_with_extracted(name)
except Exception as e:
logger.error(f"{name}\n{traceback.format_exc()}")
tb = traceback.format_exc()
tracebacks.append((name, tb))
if len(tracebacks) > 0:
for name, tb in tracebacks:
logger.error(f"Error in {name}:\n{tb}")
logger.error(f"All failed models:\n{[name for name, _ in tracebacks]}")
assert False
@pytest.mark.upstream
@pytest.mark.slow
def test_upstream_forward_backward(upstream_names: str):
if upstream_names is not None:
options = upstream_names.split(",")
else:
options = S3PRLUpstream.available_names(only_registered_ckpt=True)
options = _filter_options(options)
options = sorted(options)
options = reversed(options)
tracebacks = []
for name in options:
logger.info(f"Testing upstream: '{name}'")
try:
_test_forward_backward(name)
except Exception as e:
logger.error(f"{name}\n{traceback.format_exc()}")
tb = traceback.format_exc()
tracebacks.append((name, tb))
if len(tracebacks) > 0:
for name, tb in tracebacks:
logger.error(f"Error in {name}:\n{tb}")
logger.error(f"All failed models:\n{[name for name, _ in tracebacks]}")
assert False
@pytest.mark.upstream
@pytest.mark.parametrize("layer_selections", [None, [0, 4, 9]])
@pytest.mark.parametrize("normalize", [False, True])
def test_featurizer(layer_selections, normalize):
model = S3PRLUpstream("hubert")
featurizer = Featurizer(
model, layer_selections=layer_selections, normalize=normalize
)
wavs, wavs_len = get_pseudo_wavs(padded=True)
all_hs, all_lens = model(wavs, wavs_len)
hs, hs_len = featurizer(all_hs, all_lens)
assert isinstance(hs, torch.FloatTensor)
assert isinstance(hs_len, torch.LongTensor)
@pytest.mark.upstream
def test_upstream_properties():
model = S3PRLUpstream("hubert")
featurizer = Featurizer(model)
assert isinstance(model.hidden_sizes, (tuple, list)) and isinstance(
model.hidden_sizes[0], int
)
assert isinstance(model.downsample_rates, (tuple, list)) and isinstance(
model.downsample_rates[0], int
)
assert isinstance(featurizer.output_size, int)
assert isinstance(featurizer.downsample_rate, int)
|