File size: 10,963 Bytes
0b32ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import logging
import os
import shutil
import tempfile
import traceback
from pathlib import Path
from subprocess import check_call

import pytest
import torch
from filelock import FileLock

from s3prl.nn import Featurizer, S3PRLUpstream
from s3prl.util.download import _urls_to_filepaths
from s3prl.util.pseudo_data import get_pseudo_wavs

logger = logging.getLogger(__name__)

TEST_MORE_ITER = 2
TRAIN_MORE_ITER = 5
SAMPLE_RATE = 16000
ATOL = 0.01
MAX_LENGTH_DIFF = 3
EXTRA_SHORT_SEC = 0.05
EXTRACTED_GT_DIR = Path(__file__).parent.parent / "sample_hidden_states"
S3PRL_HF_SAMPLE_HS = "https://huggingface.co/datasets/s3prl/sample_hidden_states"

# Expect the following directory structure:
#
# -- s3prl/  (repository root)
# ---- s3prl/  (package root)
# ---- test/
# ------- test_upstream.py
# ---- sample_hidden_states/


def _prepare_sample_hidden_states():
    lock_file = Path(__file__).parent.parent / "sample_hidden_states.lock"
    with FileLock(str(lock_file)):
        # NOTE: home variable is necessary for git lfs to work
        env = dict(os.environ)
        if not "HOME" in env:
            env["HOME"] = Path.home()

        if not EXTRACTED_GT_DIR.is_dir():
            with tempfile.TemporaryDirectory() as tempdir:
                tempdir = Path(tempdir)
                tempdir.mkdir(exist_ok=True, parents=True)

                logger.info("Downloading extracted sample hidden states...")
                check_call("git lfs install".split(), cwd=tempdir, env=env)
                check_call(
                    f"git clone {S3PRL_HF_SAMPLE_HS}".split(),
                    cwd=tempdir,
                    env=env,
                )
                shutil.move(
                    str(tempdir / "sample_hidden_states"), str(EXTRACTED_GT_DIR.parent)
                )
        else:
            logger.info(f"{EXTRACTED_GT_DIR} exists. Perform git pull...")
            check_call(
                f"git pull {S3PRL_HF_SAMPLE_HS} main".split(),
                cwd=EXTRACTED_GT_DIR,
                env=env,
            )

    try:
        lock_file.unlink()
    except FileNotFoundError:
        pass


def _extract_feat(
    model: S3PRLUpstream,
    seed: int = 0,
    **pseudo_wavs_args,
):
    wavs, wavs_len = get_pseudo_wavs(seed=seed, padded=True, **pseudo_wavs_args)
    all_hs, all_lens = model(wavs, wavs_len)
    return all_hs


def _all_hidden_states_same(hs1, hs2):
    for h1, h2 in zip(hs1, hs2):
        if h1.size(1) != h2.size(1):
            length_diff = abs(h1.size(1) - h2.size(1))
            assert length_diff <= MAX_LENGTH_DIFF, f"{length_diff} > {MAX_LENGTH_DIFF}"
            min_seqlen = min(h1.size(1), h2.size(1))
            h1 = h1[:, :min_seqlen, :]
            h2 = h2[:, :min_seqlen, :]
            assert torch.allclose(h1, h2, atol=ATOL)


def _load_ground_truth(name: str):
    source = f"{EXTRACTED_GT_DIR}/{name}.pt"
    if source.startswith("http"):
        path = _urls_to_filepaths(source)
    else:
        path = source
    return torch.load(path)


def _compare_with_extracted(name: str):
    model = S3PRLUpstream(name)
    model.eval()

    with torch.no_grad():
        hs = _extract_feat(model)
        hs_gt = _load_ground_truth(name)

        _all_hidden_states_same(hs, hs_gt)

        for i in range(TEST_MORE_ITER):
            more_hs = _extract_feat(model)
            for h1, h2 in zip(hs, more_hs):
                assert torch.allclose(
                    h1, h2
                ), "should have deterministic representation in eval mode"

        for i in range(TEST_MORE_ITER):
            more_hs = _extract_feat(model, seed=i + 1)
            assert len(hs) == len(
                more_hs
            ), "should have deterministic num_layer in eval mode"

    model.train()
    for i in range(TRAIN_MORE_ITER):
        more_hs = _extract_feat(model, seed=i + 1)
        assert len(hs) == len(
            more_hs
        ), "should have deterministic num_layer in train mode"


def _test_forward_backward(name: str, **pseudo_wavs_args):
    """
    Test the upstream with the name: 'name' can successfully forward and backward
    """
    with torch.autograd.set_detect_anomaly(True):
        model = S3PRLUpstream(name)
        hs = _extract_feat(model, **pseudo_wavs_args)
        h_sum = 0
        for h in hs:
            h_sum = h_sum + h.sum()
        h_sum.backward()


def _filter_options(options: list):
    options = [
        name
        for name in options
        if (not name == "customized_upstream")
        and (
            not "mos" in name
        )  # mos models do not have hidden_states key. They only return a single mos score
        and (
            not "stft_mag" in name
        )  # stft_mag upstream must past the config file currently and is not so important. So, skip the test now
        and (
            not "pase" in name
        )  # pase_plus needs lots of dependencies and is difficult to be tested and is not very worthy today
        and (
            not name == "xls_r_1b"
        )  # skip due to too large model, too long download time
        and (
            not name == "xls_r_2b"
        )  # skip due to too large model, too long download time
        and (
            not name in ["ast", "ssast_patch_base", "ssast_frame_base"]
        )  # FIXME: remove timm dependency
        and (not name == "vggish")  # FIXME: remove resampy dependency
        and (not name == "byol_s_cvt")  # FIXME: remove einops dependency
        and (not "lighthubert" in name)  # FIXME: solve the random subnet issue
        and (not name == "passt_hop160base2lvl")  # too huge memory usage
        and (not name == "passt_hop160base2lvlmel")  # too huge memory usage
        and (not name == "passt_hop100base2lvl")  # too huge memory usage
        and (not name == "passt_hop100base2lvlmel")  # too huge memory usage
    ]
    options = [option for option in options if "passt" in option]
    return options


"""
Test cases ensure that all upstreams are working and are same with pre-extracted features
"""


def _test_specific_upstream(name: str):
    _compare_with_extracted(name)
    _test_forward_backward(
        name, min_secs=EXTRA_SHORT_SEC, max_secs=EXTRA_SHORT_SEC, n=1
    )
    _test_forward_backward(
        name, min_secs=EXTRA_SHORT_SEC, max_secs=EXTRA_SHORT_SEC, n=2
    )
    _test_forward_backward(name, min_secs=EXTRA_SHORT_SEC, max_secs=1, n=3)


@pytest.mark.upstream
@pytest.mark.parametrize(
    "name",
    [
        "apc",
        "audio_albert",
        "fbank",
        "mel",
        "modified_cpc",
        "data2vec",
        "decoar_layers",
        "decoar2",
        "distilhubert",
        # "espnet_hubert_base_iter1",  # espnet will be tested separately due to complex dependency
        "hubert",
        "lighthubert_base",
        "mockingjay",
        "npc",
        "discretebert",
        "tera",
        "unispeech_sat_base",
        "vq_apc",
        "vq_wav2vec",
        "wav2vec",
        "wav2vec2",
        "wavlm",
    ],
)
def test_common_upstream(name):
    if "espnet" in name:
        try:
            import espnet
        except:
            logger.info("Skip ESPNet upstream test cases if espnet is not installed")
            return

    _prepare_sample_hidden_states()
    _test_specific_upstream(name)


@pytest.mark.upstream
def test_specific_upstream(upstream_names: str):
    _prepare_sample_hidden_states()
    if upstream_names is not None:
        options = upstream_names.split(",")

        tracebacks = []
        for name in options:
            logger.info(f"Testing upstream: '{name}'")
            try:
                _test_specific_upstream(name)
            except Exception as e:
                logger.error(f"{name}\n{traceback.format_exc()}")
                tb = traceback.format_exc()
                tracebacks.append((name, tb))

        if len(tracebacks) > 0:
            for name, tb in tracebacks:
                logger.error(f"Error in {name}:\n{tb}")
            logger.error(f"All failed models:\n{[name for name, _ in tracebacks]}")
            assert False


@pytest.mark.upstream
@pytest.mark.slow
def test_upstream_with_extracted(upstream_names: str):
    _prepare_sample_hidden_states()

    if upstream_names is not None:
        options = upstream_names.split(",")
    else:
        options = S3PRLUpstream.available_names(only_registered_ckpt=True)
        options = _filter_options(options)
        options = sorted(options)

    tracebacks = []
    for name in options:
        logger.info(f"Testing upstream: '{name}'")
        try:
            _compare_with_extracted(name)

        except Exception as e:
            logger.error(f"{name}\n{traceback.format_exc()}")
            tb = traceback.format_exc()
            tracebacks.append((name, tb))

    if len(tracebacks) > 0:
        for name, tb in tracebacks:
            logger.error(f"Error in {name}:\n{tb}")
        logger.error(f"All failed models:\n{[name for name, _ in tracebacks]}")
        assert False


@pytest.mark.upstream
@pytest.mark.slow
def test_upstream_forward_backward(upstream_names: str):
    if upstream_names is not None:
        options = upstream_names.split(",")
    else:
        options = S3PRLUpstream.available_names(only_registered_ckpt=True)
        options = _filter_options(options)
        options = sorted(options)
        options = reversed(options)

    tracebacks = []
    for name in options:
        logger.info(f"Testing upstream: '{name}'")
        try:
            _test_forward_backward(name)

        except Exception as e:
            logger.error(f"{name}\n{traceback.format_exc()}")
            tb = traceback.format_exc()
            tracebacks.append((name, tb))

    if len(tracebacks) > 0:
        for name, tb in tracebacks:
            logger.error(f"Error in {name}:\n{tb}")
        logger.error(f"All failed models:\n{[name for name, _ in tracebacks]}")
        assert False


@pytest.mark.upstream
@pytest.mark.parametrize("layer_selections", [None, [0, 4, 9]])
@pytest.mark.parametrize("normalize", [False, True])
def test_featurizer(layer_selections, normalize):
    model = S3PRLUpstream("hubert")
    featurizer = Featurizer(
        model, layer_selections=layer_selections, normalize=normalize
    )

    wavs, wavs_len = get_pseudo_wavs(padded=True)
    all_hs, all_lens = model(wavs, wavs_len)
    hs, hs_len = featurizer(all_hs, all_lens)

    assert isinstance(hs, torch.FloatTensor)
    assert isinstance(hs_len, torch.LongTensor)


@pytest.mark.upstream
def test_upstream_properties():
    model = S3PRLUpstream("hubert")
    featurizer = Featurizer(model)
    assert isinstance(model.hidden_sizes, (tuple, list)) and isinstance(
        model.hidden_sizes[0], int
    )
    assert isinstance(model.downsample_rates, (tuple, list)) and isinstance(
        model.downsample_rates[0], int
    )
    assert isinstance(featurizer.output_size, int)
    assert isinstance(featurizer.downsample_rate, int)