|
runner: |
|
total_steps: 200000 |
|
gradient_clipping: 1 |
|
gradient_accumulate_steps: 1 |
|
log_step: 100 |
|
eval_step: 2000 |
|
save_step: 500 |
|
max_keep: 1 |
|
eval_dataloaders: |
|
- dev-clean |
|
|
|
optimizer: |
|
name: TorchOptim |
|
torch_optim_name: Adam |
|
lr: 1.0e-4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
specaug: |
|
adaptive: false |
|
adaptive_number_ratio: 0.04 |
|
adaptive_size_ratio: 0.04 |
|
max_n_time_masks: 20 |
|
apply_time_warp: true |
|
apply_time_mask: true |
|
apply_freq_mask: true |
|
time_warp_window: 5 |
|
time_mask_width_range: [0, 40] |
|
freq_mask_width_range: [0, 50] |
|
num_freq_mask: 4 |
|
num_time_mask: 2 |
|
|
|
downstream_expert: |
|
datarc: |
|
train: ['train-clean-100'] |
|
dev-clean: ['dev-clean'] |
|
dev-other: ['dev-other'] |
|
test-clean: ['test-clean'] |
|
test-other: ['test-other'] |
|
num_workers: 12 |
|
train_batch_size: 32 |
|
batch_size: 32 |
|
eval_batch_size: 1 |
|
libri_root: '/home/leo/d/datasets/LibriSpeech' |
|
bucket_file: './data/librispeech/len_for_bucket' |
|
dict_path: "./downstream/asr/char.dict" |
|
|
|
zero_infinity: True |
|
|
|
decoder_args: |
|
|
|
|
|
|
|
|
|
|
|
decoder_type: 'None' |
|
nbest: 1 |
|
criterion: "ctc" |
|
beam: 5 |
|
beam_threshold: 25 |
|
kenlm_model: '/home/leo/d/datasets/4-gram.arpa' |
|
lexicon: '/home/leo/d/datasets/librispeech_lexicon.lst' |
|
lm_weight: 2 |
|
word_score: -1 |
|
unk_weight: -math.inf |
|
sil_weight: 0 |
|
|
|
modelrc: |
|
project_dim: 1024 |
|
select: RNNs |
|
Wav2Letter: |
|
total_rate: 320 |
|
RNNs: |
|
total_rate: -1 |
|
module: 'LSTM' |
|
bidirection: True |
|
dim: [1024, 1024] |
|
dropout: [0.2, 0.2] |
|
layer_norm: [False, False] |
|
proj: [False, False] |
|
sample_rate: [1, 1] |
|
sample_style: 'concat' |
|
|