|
|
|
"""*********************************************************************************************""" |
|
|
|
|
|
|
|
|
|
|
|
"""*********************************************************************************************""" |
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
from itertools import permutations |
|
|
|
|
|
|
|
def create_length_mask(length, max_len, num_output, device): |
|
batch_size = len(length) |
|
mask = torch.zeros(batch_size, max_len, num_output) |
|
for i in range(batch_size): |
|
mask[i, : length[i], :] = 1 |
|
mask = mask.to(device) |
|
return mask |
|
|
|
|
|
|
|
def pit_loss_single_permute(output, label, length): |
|
bce_loss = torch.nn.BCEWithLogitsLoss(reduction="none") |
|
mask = create_length_mask(length, label.size(1), label.size(2), label.device) |
|
loss = bce_loss(output, label) |
|
loss = loss * mask |
|
loss = torch.sum(torch.mean(loss, dim=2), dim=1) |
|
loss = torch.unsqueeze(loss, dim=1) |
|
return loss |
|
|
|
|
|
def pit_loss(output, label, length): |
|
num_output = label.size(2) |
|
device = label.device |
|
permute_list = [np.array(p) for p in permutations(range(num_output))] |
|
loss_list = [] |
|
for p in permute_list: |
|
label_perm = label[:, :, p] |
|
loss_perm = pit_loss_single_permute(output, label_perm, length) |
|
loss_list.append(loss_perm) |
|
loss = torch.cat(loss_list, dim=1) |
|
min_loss, min_idx = torch.min(loss, dim=1) |
|
loss = torch.sum(min_loss) / torch.sum(length.float().to(device)) |
|
return loss, min_idx, permute_list |
|
|
|
|
|
def get_label_perm(label, perm_idx, perm_list): |
|
batch_size = len(perm_idx) |
|
label_list = [] |
|
for i in range(batch_size): |
|
label_list.append(label[i, :, perm_list[perm_idx[i]]].data.cpu().numpy()) |
|
return torch.from_numpy(np.array(label_list)).float() |
|
|
|
|
|
def calc_diarization_error(pred, label, length): |
|
(batch_size, max_len, num_output) = label.size() |
|
|
|
mask = np.zeros((batch_size, max_len, num_output)) |
|
for i in range(batch_size): |
|
mask[i, : length[i], :] = 1 |
|
|
|
|
|
label_np = label.data.cpu().numpy().astype(int) |
|
pred_np = (pred.data.cpu().numpy() > 0).astype(int) |
|
label_np = label_np * mask |
|
pred_np = pred_np * mask |
|
length = length.data.cpu().numpy() |
|
|
|
|
|
n_ref = np.sum(label_np, axis=2) |
|
n_sys = np.sum(pred_np, axis=2) |
|
speech_scored = float(np.sum(n_ref > 0)) |
|
speech_miss = float(np.sum(np.logical_and(n_ref > 0, n_sys == 0))) |
|
speech_falarm = float(np.sum(np.logical_and(n_ref == 0, n_sys > 0))) |
|
|
|
|
|
speaker_scored = float(np.sum(n_ref)) |
|
speaker_miss = float(np.sum(np.maximum(n_ref - n_sys, 0))) |
|
speaker_falarm = float(np.sum(np.maximum(n_sys - n_ref, 0))) |
|
n_map = np.sum(np.logical_and(label_np == 1, pred_np == 1), axis=2) |
|
speaker_error = float(np.sum(np.minimum(n_ref, n_sys) - n_map)) |
|
correct = float(1.0 * np.sum((label_np == pred_np) * mask) / num_output) |
|
num_frames = np.sum(length) |
|
return ( |
|
correct, |
|
num_frames, |
|
speech_scored, |
|
speech_miss, |
|
speech_falarm, |
|
speaker_scored, |
|
speaker_miss, |
|
speaker_falarm, |
|
speaker_error, |
|
) |
|
|