|
|
|
"""*********************************************************************************************""" |
|
|
|
|
|
|
|
|
|
|
|
"""*********************************************************************************************""" |
|
|
|
|
|
|
|
|
|
import os |
|
import pickle |
|
import kaldi_io |
|
import operator |
|
import numpy as np |
|
import pandas as pd |
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
|
|
|
KALDI_PATH = os.path.join('../kaldi/egs/voxceleb/v1/data/') |
|
OUTPUT_DIR = '../data/voxceleb_mfcc_kaldi' |
|
|
|
|
|
|
|
|
|
|
|
SETS = ['train'] |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
if not os.path.isdir(KALDI_PATH): |
|
print('CHANGE THIS TO YOUR OWN KALDI PATH: ', KALDI_PATH) |
|
print('Please run the kaldi scripts first to generate kaldi data directory.') |
|
exit() |
|
|
|
if not os.path.isdir(OUTPUT_DIR): |
|
os.mkdir(OUTPUT_DIR) |
|
|
|
|
|
for s in SETS: |
|
print('Preprocessing', s, 'data...') |
|
output = {} |
|
cur_dir = os.path.join(OUTPUT_DIR, s) |
|
if not os.path.isdir(cur_dir): os.mkdir(cur_dir) |
|
|
|
path = os.path.join(KALDI_PATH, s + '/feats.scp') |
|
for key, mat in tqdm(kaldi_io.read_mat_scp(path)): |
|
|
|
array = np.asarray(mat).astype('float32') |
|
np.save(os.path.join(cur_dir, key), array) |
|
output[os.path.join(s, key + '.npy')] = len(array) |
|
|
|
output = sorted(output.items(), key=operator.itemgetter(1), reverse=True) |
|
df = pd.DataFrame(data={'file_path':[fp for fp, l in output], 'length':[l for fp, l in output], 'label':'None'}) |
|
df.to_csv(os.path.join(OUTPUT_DIR, s + '.csv')) |
|
|
|
print('[ARK-TO-VOXCELEB] - All done, saved at \'' + str(OUTPUT_DIR) + '\', exit.') |
|
exit() |
|
|
|
if __name__ == '__main__': |
|
main() |