lmzjms's picture
Upload 1162 files
0b32ad6 verified
import json
from collections import defaultdict
from copy import deepcopy
from pathlib import Path
import pandas as pd
import torchaudio
from omegaconf import MISSING
from ._hear_util import resample_hear_corpus
from .hear_dcase_2016_task2 import HearDcase2016Task2
MAESTRO_NUM_FOLDS = 5
__all__ = ["HearMaestro"]
def prepare_maestro(
target_dir: str,
cache_dir: str,
dataset_root: str,
test_fold: int = 0,
get_path_only: bool = False,
):
target_dir: Path = Path(target_dir)
train_csv = target_dir / "train.csv"
valid_csv = target_dir / "valid.csv"
test_csv = target_dir / "test.csv"
if get_path_only:
return train_csv, valid_csv, [test_csv]
assert test_fold < MAESTRO_NUM_FOLDS, (
f"MAESTRO only has {MAESTRO_NUM_FOLDS} folds but get 'test_fold' "
f"arguments {test_fold}"
)
resample_hear_corpus(dataset_root, target_sr=16000)
dataset_root = Path(dataset_root)
wav_root = dataset_root / "16000"
NUM_FOLD = 5
test_id = test_fold
valid_id = (test_fold + 1) % NUM_FOLD
train_ids = [idx for idx in range(NUM_FOLD) if idx not in [test_id, valid_id]]
fold_metas = []
fold_dfs = []
for fold_id in range(NUM_FOLD):
with open(dataset_root / f"fold{fold_id:2d}.json".replace(" ", "0")) as f:
metadata = json.load(f)
fold_metas.append(metadata)
data = defaultdict(list)
for utt in metadata:
wav_path = (
wav_root / f"fold{fold_id:2d}".replace(" ", "0") / utt
).resolve()
info = torchaudio.info(wav_path)
baseinfo = {
"record_id": utt,
"wav_path": str(wav_path),
"duration": info.num_frames / info.sample_rate,
}
for segment in metadata[utt]:
fullinfo = deepcopy(baseinfo)
fullinfo[
"utt_id"
] = f"{baseinfo['record_id']}-{int(segment['start'])}-{int(segment['end'])}"
fullinfo["labels"] = segment["label"]
fullinfo["start_sec"] = segment["start"] / 1000
fullinfo["end_sec"] = segment["end"] / 1000
for key, value in fullinfo.items():
data[key].append(value)
fold_dfs.append(pd.DataFrame(data=data))
test_meta, test_data = fold_metas[test_id], fold_dfs[test_id]
valid_meta, valid_data = fold_metas[valid_id], fold_dfs[valid_id]
train_meta, train_data = {}, []
for idx in train_ids:
train_meta.update(fold_metas[idx])
train_data.append(fold_dfs[idx])
train_data: pd.DataFrame = pd.concat(train_data)
train_data.to_csv(train_csv, index=False)
valid_data.to_csv(valid_csv, index=False)
test_data.to_csv(test_csv, index=False)
return train_csv, valid_csv, [test_csv]
class HearMaestro(HearDcase2016Task2):
def default_config(self) -> dict:
return dict(
start=0,
stop=None,
target_dir=MISSING,
cache_dir=None,
remove_all_cache=False,
prepare_data=dict(
dataset_root=MISSING,
test_fold=MISSING,
),
build_batch_sampler=dict(
train=dict(
batch_size=5,
shuffle=True,
),
valid=dict(
item="record_id",
),
test=dict(
item="record_id",
),
),
build_upstream=dict(
name=MISSING,
),
build_featurizer=dict(
layer_selections=None,
normalize=False,
),
build_downstream=dict(
hidden_layers=2,
),
build_model=dict(
upstream_trainable=False,
),
build_task=dict(
prediction_type="multilabel",
scores=["event_onset_50ms_fms", "event_onset_offset_50ms_20perc_fms"],
postprocessing_grid={
"median_filter_ms": [150],
"min_duration": [50],
},
),
build_optimizer=dict(
name="Adam",
conf=dict(
lr=1.0e-3,
),
),
build_scheduler=dict(
name="ExponentialLR",
gamma=0.9,
),
save_model=dict(),
save_task=dict(),
train=dict(
total_steps=15000,
log_step=100,
eval_step=500,
save_step=500,
gradient_clipping=1.0,
gradient_accumulate=1,
valid_metric="event_onset_50ms_fms",
valid_higher_better=True,
auto_resume=True,
resume_ckpt_dir=None,
),
evaluate=dict(),
)
def prepare_data(
self,
prepare_data: dict,
target_dir: str,
cache_dir: str,
get_path_only: bool = False,
):
return prepare_maestro(
**self._get_current_arguments(flatten_dict="prepare_data")
)