|
from omegaconf import MISSING |
|
|
|
from .hear_fsd import HearFSD |
|
|
|
__all__ = ["HearNsynth5hr"] |
|
|
|
|
|
class HearNsynth5hr(HearFSD): |
|
def default_config(self) -> dict: |
|
return dict( |
|
start=0, |
|
stop=None, |
|
target_dir=MISSING, |
|
cache_dir=None, |
|
remove_all_cache=False, |
|
prepare_data=dict( |
|
dataset_root=MISSING, |
|
), |
|
build_batch_sampler=dict( |
|
train=dict( |
|
batch_size=32, |
|
shuffle=True, |
|
), |
|
valid=dict( |
|
batch_size=1, |
|
), |
|
test=dict( |
|
batch_size=1, |
|
), |
|
), |
|
build_upstream=dict( |
|
name=MISSING, |
|
), |
|
build_featurizer=dict( |
|
layer_selections=None, |
|
normalize=False, |
|
), |
|
build_downstream=dict( |
|
hidden_layers=2, |
|
pooling_type="MeanPooling", |
|
), |
|
build_model=dict( |
|
upstream_trainable=False, |
|
), |
|
build_task=dict( |
|
prediction_type="multiclass", |
|
scores=["pitch_acc", "chroma_acc"], |
|
), |
|
build_optimizer=dict( |
|
name="Adam", |
|
conf=dict( |
|
lr=1.0e-3, |
|
), |
|
), |
|
build_scheduler=dict( |
|
name="ExponentialLR", |
|
gamma=0.9, |
|
), |
|
save_model=dict(), |
|
save_task=dict(), |
|
train=dict( |
|
total_steps=150000, |
|
log_step=100, |
|
eval_step=1000, |
|
save_step=100, |
|
gradient_clipping=1.0, |
|
gradient_accumulate=1, |
|
valid_metric="pitch_acc", |
|
valid_higher_better=True, |
|
auto_resume=True, |
|
resume_ckpt_dir=None, |
|
), |
|
evaluate=dict(), |
|
) |
|
|