|
import logging |
|
from collections import defaultdict |
|
|
|
from s3prl import Container, Workspace, field |
|
from s3prl.dataset.utterance_classification_pipe import HearScenePipe |
|
from s3prl.nn import S3PRLUpstreamDriver, UpstreamDownstreamModel |
|
from s3prl.nn.hear import HearFullyConnectedPrediction |
|
from s3prl.problem.base import Problem |
|
from s3prl.problem.trainer import Trainer |
|
from s3prl.sampler import FixedBatchSizeBatchSampler |
|
from s3prl.task.scene_prediction import ScenePredictionTask |
|
from s3prl.task.utterance_classification_task import UtteranceClassificationTask |
|
from s3prl.util.configuration import default_cfg |
|
from s3prl.util.seed import fix_random_seeds |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class HearScene(Problem, Trainer): |
|
@default_cfg( |
|
workspace=field( |
|
"???", |
|
"\nWill put the following keys into this workspace:\n" |
|
" 'train_dataset', 'train_sampler', 'valid_dataset', 'valid_sampler', and 'task'", |
|
"str or Path or Workspace", |
|
), |
|
corpus=dict( |
|
CLS=field( |
|
"???", |
|
"\nThe corpus class. You can add the **kwargs right below this CLS key", |
|
str, |
|
), |
|
dataset_root=field( |
|
"???", |
|
"The root path of the corpus", |
|
str, |
|
), |
|
), |
|
train_datapipe=dict( |
|
CLS=field( |
|
HearScenePipe, |
|
"\nThe first datapipe class to be applied to the corpus. You can add the **kwargs right below this CLS key", |
|
str, |
|
), |
|
), |
|
train_sampler=dict( |
|
CLS=field( |
|
FixedBatchSizeBatchSampler, |
|
"\nThe batch sampler class. You can add the **kwargs right below this CLS key", |
|
str, |
|
), |
|
batch_size="???", |
|
), |
|
valid_datapipe=dict( |
|
CLS=field( |
|
HearScenePipe, |
|
"\nThe first datapipe class to be applied to the corpus. You can add the **kwargs right below this CLS key", |
|
str, |
|
), |
|
), |
|
valid_sampler=dict( |
|
CLS=FixedBatchSizeBatchSampler, |
|
batch_size=1, |
|
), |
|
test_datapipe=dict( |
|
CLS=field( |
|
HearScenePipe, |
|
"\nThe first datapipe class to be applied to the corpus. You can add the **kwargs right below this CLS key", |
|
str, |
|
), |
|
), |
|
test_sampler=dict( |
|
CLS=FixedBatchSizeBatchSampler, |
|
batch_size=1, |
|
), |
|
upstream=dict( |
|
CLS=field( |
|
S3PRLUpstreamDriver, |
|
"\nThe class of the upstream model following the specific interface. You can add the **kwargs right below this CLS key", |
|
str, |
|
), |
|
name="hubert", |
|
feature_selection="hidden_states", |
|
freeze_upstream=field( |
|
True, |
|
"Set the entire upstream model's requires_grad to False, or else, leave it alone", |
|
), |
|
normalize=field( |
|
False, "Apply layer-norm to upstream model's each layer hidden_state" |
|
), |
|
weighted_sum=field( |
|
True, |
|
"If True, apply weighted-sum on the selected layers; If False, take the final layer.\n" |
|
"For the selected layers, see the 'layer_selections' option", |
|
), |
|
layer_selections=field( |
|
None, |
|
"If None, select all layers; Or, select the subset layers defined by this option", |
|
), |
|
legacy=True, |
|
), |
|
downstream=dict( |
|
CLS=field( |
|
HearFullyConnectedPrediction, |
|
"\nThe downstream model class for each task. You can add the **kwargs right below this CLS key", |
|
str, |
|
), |
|
hidden_layers=2, |
|
pooling="mean", |
|
), |
|
task=dict( |
|
CLS=field( |
|
ScenePredictionTask, |
|
"\nThe task class defining what to do for each train/valid/test step in the train/valid/test dataloader loop" |
|
"\nYou can add the **kwargs right below this CLS key", |
|
str, |
|
), |
|
prediction_type="???", |
|
scores="???", |
|
), |
|
) |
|
@classmethod |
|
def setup(cls, **cfg) -> Container: |
|
cfg = Container(cfg) |
|
workspace = Workspace(cfg.workspace) |
|
fix_random_seeds() |
|
|
|
upstream = cfg.upstream() |
|
stats = Container( |
|
feat_frame_shift=upstream.downsample_rate, |
|
) |
|
|
|
logger.info("Preparing corpus") |
|
train_data, valid_data, test_data, corpus_stats = cfg.corpus().split(3) |
|
stats = corpus_stats.add(stats) |
|
|
|
logger.info("Preparing train data") |
|
train_dataset = cfg.train_datapipe(**stats)(train_data, **stats) |
|
train_sampler = cfg.train_sampler(train_dataset) |
|
stats.override(train_dataset.all_tools()) |
|
workspace.environ.update(stats) |
|
|
|
logger.info("Preparing valid data") |
|
valid_dataset = cfg.valid_datapipe(**dict(workspace.environ))( |
|
valid_data, **dict(workspace.environ) |
|
) |
|
valid_sampler = cfg.valid_sampler(valid_dataset) |
|
|
|
logger.info("Preparing test data") |
|
test_dataset = cfg.test_datapipe(**dict(workspace.environ))( |
|
test_data, **dict(workspace.environ) |
|
) |
|
test_sampler = cfg.test_sampler(test_dataset) |
|
|
|
logger.info("Preparing model and task") |
|
downstream = cfg.downstream(upstream.output_size, **dict(workspace.environ)) |
|
model = UpstreamDownstreamModel(upstream, downstream) |
|
task = cfg.task(model, **dict(workspace.environ)) |
|
|
|
workspace["train_data"] = train_data |
|
workspace["valid_data"] = valid_data |
|
workspace["test_data"] = test_data |
|
workspace["train_dataset"] = train_dataset |
|
workspace["train_sampler"] = train_sampler |
|
workspace["valid_dataset"] = valid_dataset |
|
workspace["valid_sampler"] = valid_sampler |
|
workspace["test_dataset"] = test_dataset |
|
workspace["test_sampler"] = test_sampler |
|
workspace["task"] = task |
|
|
|
@default_cfg( |
|
**Trainer.train.default_except( |
|
optimizer=dict( |
|
CLS="torch.optim.Adam", |
|
lr=1.0e-3, |
|
), |
|
trainer=dict( |
|
total_steps=150000, |
|
log_step=100, |
|
eval_step=1000, |
|
save_step=100, |
|
gradient_clipping=1.0, |
|
gradient_accumulate_steps=1, |
|
valid_metric="???", |
|
valid_higher_better="???", |
|
), |
|
) |
|
) |
|
@classmethod |
|
def train(cls, **cfg): |
|
""" |
|
Train the setup problem with the train/valid datasets & samplers and the task object |
|
""" |
|
super().train(**cfg) |
|
|
|
@default_cfg(**Trainer.inference.default_cfg) |
|
@classmethod |
|
def inference(cls, **cfg): |
|
super().inference(**cfg) |
|
|
|
@default_cfg( |
|
**Problem.run.default_except( |
|
stages=["setup", "train", "inference"], |
|
start_stage="setup", |
|
final_stage="inference", |
|
setup=setup.default_cfg.deselect("workspace", "resume"), |
|
train=train.default_cfg.deselect("workspace", "resume"), |
|
inference=inference.default_cfg.deselect("workspace", "resume"), |
|
) |
|
) |
|
@classmethod |
|
def run(cls, **cfg): |
|
super().run(**cfg) |
|
|
|
@default_cfg( |
|
num_fold=field(5, "The number of folds to run cross validation", int), |
|
**run.default_except( |
|
workspace=field( |
|
"???", |
|
"The root workspace for all folds.\n" |
|
"Each fold will use a 'fold_{id}' sub-workspace under this root workspace", |
|
), |
|
setup=dict( |
|
corpus=dict( |
|
test_fold=field( |
|
"TBD", "This will be auto-set by 'run_cross_validation'" |
|
) |
|
) |
|
), |
|
), |
|
) |
|
@classmethod |
|
def cross_validation(cls, **cfg): |
|
""" |
|
Except 'num_fold', all other fields are for 'run' for every fold. That is, all folds shared the same |
|
config (training hypers, dataset root, etc) except 'workspace' and 'test_fold' are different |
|
""" |
|
cfg = Container(cfg) |
|
workspaces = [ |
|
str(Workspace(cfg.workspace) / f"fold_{fold_id}") |
|
for fold_id in range(cfg.num_fold) |
|
] |
|
for fold_id, workspace in enumerate(workspaces): |
|
fold_cfg = cfg.clone().deselect("num_fold") |
|
|
|
fold_cfg.workspace = workspace |
|
fold_cfg.setup.corpus.test_fold = fold_id |
|
cls.run( |
|
**fold_cfg, |
|
) |
|
metrics = defaultdict(list) |
|
for fold_id, workspace in enumerate(workspaces): |
|
workspace = Workspace(workspace) |
|
metric = workspace["test_metrics"] |
|
for key, value in metric.items(): |
|
metrics[key].append(value) |
|
|
|
avg_result = dict() |
|
for key, values in metrics.items(): |
|
avg_score = sum(values) / len(values) |
|
avg_result[key] = avg_score |
|
logger.info(f"Average {key}: {avg_score}") |
|
|
|
Workspace(cfg.workspace).put(avg_result, "avg_test_metrics", "yaml") |
|
|