lmzjms's picture
Upload 1162 files
0b32ad6 verified
import logging
from s3prl import Container, Workspace, field
from s3prl.dataset.hear_timestamp import HearTimestampDatapipe
from s3prl.nn import S3PRLUpstreamDriver, UpstreamDownstreamModel
from s3prl.problem.base import Problem
from s3prl.problem.trainer import Trainer
from s3prl.sampler import FixedBatchSizeBatchSampler, GroupSameItemSampler
from s3prl.util.configuration import default_cfg
from s3prl.util.seed import fix_random_seeds
logger = logging.getLogger(__name__)
class HearTimestamp(Problem, Trainer):
@default_cfg(
workspace=field(
"???",
"\nWill put the following keys into this workspace:\n"
" 'train_dataset', 'train_sampler', 'valid_dataset', 'valid_sampler', and 'task'",
"str or Path or Workspace",
),
corpus=dict(
CLS=field(
"???",
"\nThe corpus class. You can add the **kwargs right below this CLS key",
str,
),
dataset_root=field(
"???",
"The root path of the corpus",
str,
),
),
train_datapipe=dict(
CLS=field(
HearTimestampDatapipe,
"\nThe first datapipe class to be applied to the corpus. You can add the **kwargs right below this CLS key",
str,
),
),
train_sampler=dict(
CLS=field(
FixedBatchSizeBatchSampler,
"\nThe batch sampler class. You can add the **kwargs right below this CLS key",
str,
),
batch_size=5,
),
valid_datapipe=dict(
CLS=field(
HearTimestampDatapipe,
"\nThe first datapipe class to be applied to the corpus. You can add the **kwargs right below this CLS key",
str,
),
),
valid_sampler=dict(
CLS=GroupSameItemSampler,
item_name="unchunked_id",
item_order_name="chunk_index",
),
test_datapipe=dict(
CLS=field(
HearTimestampDatapipe,
"\nThe first datapipe class to be applied to the corpus. You can add the **kwargs right below this CLS key",
str,
),
),
test_sampler=dict(
CLS=GroupSameItemSampler,
item_name="unchunked_id",
item_order_name="chunk_index",
),
upstream=dict(
CLS=field(
S3PRLUpstreamDriver,
"\nThe class of the upstream model following the specific interface. You can add the **kwargs right below this CLS key",
str,
),
name="hubert",
feature_selection="hidden_states",
freeze_upstream=field(
True,
"Set the entire upstream model's requires_grad to False, or else, leave it alone",
),
normalize=field(
False, "Apply layer-norm to upstream model's each layer hidden_state"
),
weighted_sum=field(
True,
"If True, apply weighted-sum on the selected layers; If False, take the final layer.\n"
"For the selected layers, see the 'layer_selections' option",
),
layer_selections=field(
None,
"If None, select all layers; Or, select the subset layers defined by this option",
),
),
downstream=dict(
CLS=field(
"???",
"\nThe downstream model class for each task. You can add the **kwargs right below this CLS key",
str,
),
),
task=dict(
CLS=field(
"???",
"\nThe task class defining what to do for each train/valid/test step in the train/valid/test dataloader loop"
"\nYou can add the **kwargs right below this CLS key",
str,
),
),
)
@classmethod
def setup(cls, **cfg) -> Container:
cfg = Container(cfg)
workspace = Workspace(cfg.workspace)
fix_random_seeds()
upstream = cfg.upstream()
stats = Container(
feat_frame_shift=upstream.downsample_rate,
)
logger.info("Preparing corpus")
train_data, valid_data, test_data, corpus_stats = cfg.corpus().split(3)
stats = corpus_stats.add(stats)
logger.info("Preparing train data")
train_dataset = cfg.train_datapipe(**stats)(train_data, **stats)
train_sampler = cfg.train_sampler(train_dataset)
stats.override(train_dataset.all_tools())
workspace.environ.update(stats)
logger.info("Preparing valid data")
valid_dataset = cfg.valid_datapipe(**dict(workspace.environ))(
valid_data, **dict(workspace.environ)
)
valid_sampler = cfg.valid_sampler(valid_dataset)
logger.info("Preparing test data")
test_dataset = cfg.test_datapipe(**dict(workspace.environ))(
test_data, **dict(workspace.environ)
)
test_sampler = cfg.test_sampler(test_dataset)
logger.info("Preparing model and task")
downstream = cfg.downstream(upstream.output_size, **dict(workspace.environ))
model = UpstreamDownstreamModel(upstream, downstream)
task = cfg.task(model, **dict(workspace.environ))
workspace["train_data"] = train_data
workspace["valid_data"] = valid_data
workspace["test_data"] = test_data
workspace["train_dataset"] = train_dataset
workspace["train_sampler"] = train_sampler
workspace["valid_dataset"] = valid_dataset
workspace["valid_sampler"] = valid_sampler
workspace["test_dataset"] = test_dataset
workspace["test_sampler"] = test_sampler
workspace["task"] = task