|
from s3prl.corpus.librispeech import librispeech_for_speech2text |
|
from s3prl.dataset.speech2phoneme_pipe import Speech2PhonemePipe |
|
from s3prl.nn.linear import FrameLevelLinear |
|
from s3prl.sampler import FixedBatchSizeBatchSampler, SortedSliceSampler |
|
from s3prl.task.speech2text_ctc_task import Speech2TextCTCTask |
|
from s3prl.util.configuration import default_cfg |
|
|
|
from .base import SuperbProblem |
|
|
|
|
|
class SuperbPR(SuperbProblem): |
|
@default_cfg( |
|
**SuperbProblem.setup.default_except( |
|
corpus=dict( |
|
CLS=librispeech_for_speech2text, |
|
dataset_root="???", |
|
), |
|
train_datapipe=dict( |
|
CLS=Speech2PhonemePipe, |
|
), |
|
train_sampler=dict( |
|
CLS=SortedSliceSampler, |
|
batch_size=16, |
|
max_length=300000, |
|
), |
|
valid_datapipe=dict( |
|
CLS=Speech2PhonemePipe, |
|
), |
|
valid_sampler=dict( |
|
CLS=FixedBatchSizeBatchSampler, |
|
batch_size=8, |
|
), |
|
test_datapipe=dict( |
|
CLS=Speech2PhonemePipe, |
|
), |
|
test_sampler=dict( |
|
CLS=FixedBatchSizeBatchSampler, |
|
batch_size=8, |
|
), |
|
downstream=dict( |
|
CLS=FrameLevelLinear, |
|
), |
|
task=dict( |
|
CLS=Speech2TextCTCTask, |
|
log_metrics=["per"], |
|
), |
|
) |
|
) |
|
@classmethod |
|
def setup(cls, **cfg): |
|
super().setup(**cfg) |
|
|
|
@default_cfg( |
|
**SuperbProblem.train.default_except( |
|
optimizer=dict( |
|
CLS="torch.optim.Adam", |
|
lr=1.0e-2, |
|
), |
|
trainer=dict( |
|
total_steps=100000, |
|
log_step=100, |
|
eval_step=1000, |
|
save_step=100, |
|
gradient_clipping=1.0, |
|
gradient_accumulate_steps=2, |
|
valid_metric="per", |
|
valid_higher_better=False, |
|
), |
|
) |
|
) |
|
@classmethod |
|
def train(cls, **cfg): |
|
super().train(**cfg) |
|
|
|
@default_cfg(**SuperbProblem.inference.default_cfg) |
|
@classmethod |
|
def inference(cls, **cfg): |
|
super().inference(**cfg) |
|
|
|
@default_cfg( |
|
**SuperbProblem.run.default_except( |
|
stages=["setup", "train", "inference"], |
|
start_stage="setup", |
|
final_stage="inference", |
|
setup=setup.default_cfg.deselect("workspace", "resume", "dryrun"), |
|
train=train.default_cfg.deselect("workspace", "resume", "dryrun"), |
|
inference=inference.default_cfg.deselect("workspace", "resume", "dryrun"), |
|
) |
|
) |
|
@classmethod |
|
def run(cls, **cfg): |
|
super().run(**cfg) |
|
|