Pythia-1b DPO finetuned using original DPO code with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-1b for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-1b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.2602 ± 0.0128
none 0 acc_norm 0.2867 ± 0.0132
arc_easy 1 none 0 acc 0.5859 ± 0.0101
none 0 acc_norm 0.5008 ± 0.0103
boolq 2 none 0 acc 0.6205 ± 0.0085
hellaswag 1 none 0 acc 0.3895 ± 0.0049
none 0 acc_norm 0.4872 ± 0.0050
lambada_openai 1 none 0 perplexity 6.9417 ± 0.2019
none 0 acc 0.5550 ± 0.0069
openbookqa 1 none 0 acc 0.2140 ± 0.0184
none 0 acc_norm 0.3220 ± 0.0209
piqa 1 none 0 acc 0.7193 ± 0.0105
none 0 acc_norm 0.7008 ± 0.0107
sciq 1 none 0 acc 0.8450 ± 0.0115
none 0 acc_norm 0.7600 ± 0.0135
wikitext 2 none 0 word_perplexity 17.2316 ± N/A
none 0 byte_perplexity 1.7029 ± N/A
none 0 bits_per_byte 0.7680 ± N/A
winogrande 1 none 0 acc 0.5367 ± 0.0140

hf (pretrained=lomahony/pythia-1b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.2662 ± 0.0129
none 5 acc_norm 0.3003 ± 0.0134
arc_easy 1 none 5 acc 0.6103 ± 0.0100
none 5 acc_norm 0.5892 ± 0.0101
boolq 2 none 5 acc 0.6284 ± 0.0085
hellaswag 1 none 5 acc 0.3841 ± 0.0049
none 5 acc_norm 0.4845 ± 0.0050
lambada_openai 1 none 5 perplexity 9.6301 ± 0.2809
none 5 acc 0.4865 ± 0.0070
openbookqa 1 none 5 acc 0.2020 ± 0.0180
none 5 acc_norm 0.3300 ± 0.0210
piqa 1 none 5 acc 0.7122 ± 0.0106
none 5 acc_norm 0.7046 ± 0.0106
sciq 1 none 5 acc 0.9030 ± 0.0094
none 5 acc_norm 0.8980 ± 0.0096
wikitext 2 none 5 word_perplexity 17.2316 ± N/A
none 5 byte_perplexity 1.7029 ± N/A
none 5 bits_per_byte 0.7680 ± N/A
winogrande 1 none 5 acc 0.5296 ± 0.0140
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lomahony/pythia-1b-helpful-dpo

Collection including lomahony/pythia-1b-helpful-dpo