Pythia-410m supervised finetuned using TRLx library with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-410m for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-410m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.2355 ± 0.0124
none 0 acc_norm 0.2594 ± 0.0128
arc_easy 1 none 0 acc 0.5051 ± 0.0103
none 0 acc_norm 0.4478 ± 0.0102
boolq 2 none 0 acc 0.6113 ± 0.0085
hellaswag 1 none 0 acc 0.3372 ± 0.0047
none 0 acc_norm 0.4001 ± 0.0049
lambada_openai 1 none 0 perplexity 21.8172 ± 0.7736
none 0 acc 0.3755 ± 0.0067
openbookqa 1 none 0 acc 0.1940 ± 0.0177
none 0 acc_norm 0.2960 ± 0.0204
piqa 1 none 0 acc 0.6719 ± 0.0110
none 0 acc_norm 0.6687 ± 0.0110
sciq 1 none 0 acc 0.7700 ± 0.0133
none 0 acc_norm 0.6540 ± 0.0151
wikitext 2 none 0 word_perplexity 23.8136 ± N/A
none 0 byte_perplexity 1.8091 ± N/A
none 0 bits_per_byte 0.8553 ± N/A
winogrande 1 none 0 acc 0.5320 ± 0.0140

hf (pretrained=lomahony/pythia-410m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.2355 ± 0.0124
none 5 acc_norm 0.2790 ± 0.0131
arc_easy 1 none 5 acc 0.5274 ± 0.0102
none 5 acc_norm 0.5072 ± 0.0103
boolq 2 none 5 acc 0.5226 ± 0.0087
hellaswag 1 none 5 acc 0.3367 ± 0.0047
none 5 acc_norm 0.3991 ± 0.0049
lambada_openai 1 none 5 perplexity 37.4791 ± 1.3737
none 5 acc 0.3049 ± 0.0064
openbookqa 1 none 5 acc 0.1620 ± 0.0165
none 5 acc_norm 0.2900 ± 0.0203
piqa 1 none 5 acc 0.6708 ± 0.0110
none 5 acc_norm 0.6676 ± 0.0110
sciq 1 none 5 acc 0.8630 ± 0.0109
none 5 acc_norm 0.8430 ± 0.0115
wikitext 2 none 5 word_perplexity 23.8136 ± N/A
none 5 byte_perplexity 1.8091 ± N/A
none 5 bits_per_byte 0.8553 ± N/A
winogrande 1 none 5 acc 0.5272 ± 0.0140
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lomahony/pythia-410m-helpful-sft

Collection including lomahony/pythia-410m-helpful-sft