Pythia-70m supervised finetuned using TRLx library with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-70m for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-70m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.1715 ± 0.0110
none 0 acc_norm 0.2082 ± 0.0119
arc_easy 1 none 0 acc 0.3384 ± 0.0097
none 0 acc_norm 0.3262 ± 0.0096
boolq 2 none 0 acc 0.4239 ± 0.0086
hellaswag 1 none 0 acc 0.2629 ± 0.0044
none 0 acc_norm 0.2691 ± 0.0044
lambada_openai 1 none 0 perplexity 5937.7964 ± 424.7555
none 0 acc 0.0328 ± 0.0025
openbookqa 1 none 0 acc 0.1580 ± 0.0163
none 0 acc_norm 0.2520 ± 0.0194
piqa 1 none 0 acc 0.5593 ± 0.0116
none 0 acc_norm 0.5392 ± 0.0116
sciq 1 none 0 acc 0.3710 ± 0.0153
none 0 acc_norm 0.4990 ± 0.0158
wikitext 2 none 0 word_perplexity 550.5954 ± N/A
none 0 byte_perplexity 3.2550 ± N/A
none 0 bits_per_byte 1.7027 ± N/A
winogrande 1 none 0 acc 0.4878 ± 0.0140

hf (pretrained=lomahony/pythia-70m-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.1869 ± 0.0114
none 5 acc_norm 0.2210 ± 0.0121
arc_easy 1 none 5 acc 0.3207 ± 0.0096
none 5 acc_norm 0.3245 ± 0.0096
boolq 2 none 5 acc 0.4159 ± 0.0086
hellaswag 1 none 5 acc 0.2633 ± 0.0044
none 5 acc_norm 0.2596 ± 0.0044
lambada_openai 1 none 5 perplexity 19968.0749 ± 1423.3001
none 5 acc 0.0202 ± 0.0020
openbookqa 1 none 5 acc 0.1440 ± 0.0157
none 5 acc_norm 0.2420 ± 0.0192
piqa 1 none 5 acc 0.5359 ± 0.0116
none 5 acc_norm 0.5229 ± 0.0117
sciq 1 none 5 acc 0.3240 ± 0.0148
none 5 acc_norm 0.4310 ± 0.0157
wikitext 2 none 5 word_perplexity 550.5954 ± N/A
none 5 byte_perplexity 3.2550 ± N/A
none 5 bits_per_byte 1.7027 ± N/A
winogrande 1 none 5 acc 0.5154 ± 0.0140
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lomahony/pythia-70m-helpful-sft

Collection including lomahony/pythia-70m-helpful-sft