lombardata's picture
Evaluation on the test set completed on 2024_11_03.
4834c01 verified
|
raw
history blame
9.87 kB
metadata
license: apache-2.0
base_model: facebook/dinov2-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      drone-DinoVdeau-produttoria_binary-binary-large-2024_11_03-batch-size64_freeze
    results: []

drone-DinoVdeau-produttoria_binary-binary-large-2024_11_03-batch-size64_freeze

This model is a fine-tuned version of facebook/dinov2-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2854
  • F1 Micro: 0.8468
  • F1 Macro: 0.6351
  • Accuracy: 0.2786
  • Learning Rate: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Accuracy Rate
No log 1.0 181 0.3236 0.8262 0.5774 0.2630 0.001
No log 2.0 362 0.3146 0.8379 0.6199 0.2412 0.001
0.3995 3.0 543 0.3090 0.8398 0.6044 0.2555 0.001
0.3995 4.0 724 0.3074 0.8349 0.6003 0.2562 0.001
0.3995 5.0 905 0.3039 0.8406 0.6248 0.2516 0.001
0.3299 6.0 1086 0.3060 0.8420 0.6225 0.2596 0.001
0.3299 7.0 1267 0.3014 0.8387 0.5955 0.2820 0.001
0.3299 8.0 1448 0.3013 0.8391 0.5975 0.2703 0.001
0.3216 9.0 1629 0.3010 0.8407 0.5974 0.2841 0.001
0.3216 10.0 1810 0.3007 0.8376 0.5938 0.2711 0.001
0.3216 11.0 1991 0.3036 0.8349 0.5762 0.2773 0.001
0.3167 12.0 2172 0.3013 0.8385 0.6115 0.2674 0.001
0.3167 13.0 2353 0.2978 0.8421 0.6146 0.2648 0.001
0.315 14.0 2534 0.2977 0.8400 0.6059 0.2734 0.001
0.315 15.0 2715 0.2981 0.8434 0.6075 0.2666 0.001
0.315 16.0 2896 0.2974 0.8394 0.5933 0.2747 0.001
0.3147 17.0 3077 0.2984 0.8438 0.6147 0.2664 0.001
0.3147 18.0 3258 0.3023 0.8356 0.5804 0.2763 0.001
0.3147 19.0 3439 0.2985 0.8424 0.6159 0.2739 0.001
0.3122 20.0 3620 0.2968 0.8412 0.5984 0.2807 0.001
0.3122 21.0 3801 0.3005 0.8419 0.6060 0.2703 0.001
0.3122 22.0 3982 0.2982 0.8375 0.5804 0.2747 0.001
0.3149 23.0 4163 0.2939 0.8436 0.6152 0.2781 0.001
0.3149 24.0 4344 0.2948 0.8453 0.6229 0.2760 0.001
0.3118 25.0 4525 0.2968 0.8427 0.6103 0.2737 0.001
0.3118 26.0 4706 0.2956 0.8421 0.6045 0.2755 0.001
0.3118 27.0 4887 0.2959 0.8438 0.6115 0.2765 0.001
0.3126 28.0 5068 0.2955 0.8447 0.6191 0.2693 0.001
0.3126 29.0 5249 0.3011 0.8438 0.6216 0.2664 0.001
0.3126 30.0 5430 0.2921 0.8437 0.6025 0.2810 0.0001
0.3093 31.0 5611 0.2904 0.8439 0.6072 0.2812 0.0001
0.3093 32.0 5792 0.2903 0.8437 0.6112 0.2810 0.0001
0.3093 33.0 5973 0.2889 0.8462 0.6202 0.2854 0.0001
0.3049 34.0 6154 0.2896 0.8446 0.6151 0.2862 0.0001
0.3049 35.0 6335 0.2887 0.8449 0.6112 0.2867 0.0001
0.3012 36.0 6516 0.2889 0.8447 0.6120 0.2836 0.0001
0.3012 37.0 6697 0.2883 0.8476 0.6256 0.2867 0.0001
0.3012 38.0 6878 0.2905 0.8453 0.6057 0.2825 0.0001
0.299 39.0 7059 0.2878 0.8471 0.6254 0.2854 0.0001
0.299 40.0 7240 0.2886 0.8468 0.6223 0.2810 0.0001
0.299 41.0 7421 0.2877 0.8473 0.6261 0.2843 0.0001
0.2989 42.0 7602 0.2878 0.8477 0.6199 0.2856 0.0001
0.2989 43.0 7783 0.2872 0.8479 0.6288 0.2830 0.0001
0.2989 44.0 7964 0.2868 0.8464 0.6190 0.2841 0.0001
0.2983 45.0 8145 0.2870 0.8463 0.6236 0.2838 0.0001
0.2983 46.0 8326 0.2868 0.8460 0.6151 0.2825 0.0001
0.298 47.0 8507 0.2872 0.8462 0.6211 0.2846 0.0001
0.298 48.0 8688 0.2866 0.8467 0.6231 0.2836 0.0001
0.298 49.0 8869 0.2863 0.8460 0.6161 0.2859 0.0001
0.2965 50.0 9050 0.2864 0.8483 0.6255 0.2846 0.0001
0.2965 51.0 9231 0.2891 0.8486 0.6278 0.2849 0.0001
0.2965 52.0 9412 0.2856 0.8464 0.6255 0.2851 0.0001
0.2956 53.0 9593 0.2872 0.8490 0.6458 0.2789 0.0001
0.2956 54.0 9774 0.2856 0.8477 0.6244 0.2903 0.0001
0.2956 55.0 9955 0.2857 0.8475 0.6340 0.2846 0.0001
0.2958 56.0 10136 0.2862 0.8466 0.6241 0.2867 0.0001
0.2958 57.0 10317 0.2871 0.8454 0.6249 0.2862 0.0001
0.2958 58.0 10498 0.2858 0.8492 0.6334 0.2812 0.0001
0.2954 59.0 10679 0.2862 0.8468 0.6178 0.2888 1e-05
0.2954 60.0 10860 0.2847 0.8485 0.6276 0.2854 1e-05
0.2923 61.0 11041 0.2849 0.8480 0.6224 0.2830 1e-05
0.2923 62.0 11222 0.2855 0.8469 0.6248 0.2843 1e-05
0.2923 63.0 11403 0.2849 0.8489 0.6275 0.2828 1e-05
0.2918 64.0 11584 0.2846 0.8475 0.6371 0.2823 1e-05
0.2918 65.0 11765 0.2860 0.8468 0.6241 0.2869 1e-05
0.2918 66.0 11946 0.2847 0.8481 0.6347 0.2841 1e-05
0.2906 67.0 12127 0.2853 0.8488 0.6287 0.2854 1e-05
0.2906 68.0 12308 0.2853 0.8480 0.6321 0.2867 1e-05
0.2906 69.0 12489 0.2848 0.8477 0.6397 0.2836 1e-05
0.2918 70.0 12670 0.2853 0.8492 0.6381 0.2823 1e-05
0.2918 71.0 12851 0.2851 0.8476 0.6325 0.2882 0.0000
0.2918 72.0 13032 0.2845 0.8474 0.6236 0.2849 0.0000
0.2918 73.0 13213 0.2845 0.8476 0.6333 0.2812 0.0000
0.2918 74.0 13394 0.2845 0.8466 0.6300 0.2828 0.0000
0.2913 75.0 13575 0.2851 0.8474 0.6235 0.2820 0.0000
0.2913 76.0 13756 0.2860 0.8473 0.6186 0.2880 0.0000
0.2913 77.0 13937 0.2858 0.8459 0.6173 0.2856 0.0000
0.2913 78.0 14118 0.2844 0.8481 0.6326 0.2843 0.0000
0.2913 79.0 14299 0.2871 0.8472 0.6179 0.2875 0.0000
0.2913 80.0 14480 0.2848 0.8477 0.6287 0.2838 0.0000
0.2915 81.0 14661 0.2848 0.8490 0.6305 0.2854 0.0000
0.2915 82.0 14842 0.2851 0.8480 0.6394 0.2859 0.0000
0.2913 83.0 15023 0.2846 0.8488 0.6255 0.2856 0.0000
0.2913 84.0 15204 0.2857 0.8482 0.6458 0.2833 0.0000
0.2913 85.0 15385 0.2855 0.8488 0.6340 0.2812 0.0000
0.2922 86.0 15566 0.2849 0.8480 0.6363 0.2859 0.0000
0.2922 87.0 15747 0.2845 0.8474 0.6328 0.2851 0.0000
0.2922 88.0 15928 0.2854 0.8478 0.6371 0.2812 0.0000

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.19.1