lombardata's picture
Upload README.md
0da2bb9 verified
|
raw
history blame
13 kB
---
language:
- eng
license: cc0-1.0
tags:
- multilabel-image-classification
- multilabel
- generated_from_trainer
base_model: drone-DinoVdeau-produttoria_binary-binary-large-2024_11_03-batch-size64_freeze
model-index:
- name: drone-DinoVdeau-produttoria_binary-binary-large-2024_11_03-batch-size64_freeze
results: []
---
drone-DinoVdeau-produttoria_binary-binary is a fine-tuned version of [drone-DinoVdeau-produttoria_binary-binary-large-2024_11_03-batch-size64_freeze](https://huggingface.co/drone-DinoVdeau-produttoria_binary-binary-large-2024_11_03-batch-size64_freeze). It achieves the following results on the test set:
- Loss: 0.2854
- F1 Micro: 0.8468
- F1 Macro: 0.6351
- Accuracy: 0.2786
| Class | F1 per class |
|----------|-------|
| Acropore_branched | 0.8084 |
| Acropore_digitised | 0.5125 |
| Acropore_tabular | 0.3951 |
| Algae | 0.9562 |
| Dead_coral | 0.7470 |
| Fish | 0.6639 |
| Millepore | 0.3021 |
| No_acropore_encrusting | 0.5923 |
| No_acropore_massive | 0.7651 |
| No_acropore_sub_massive | 0.6345 |
| Rock | 0.9536 |
| Rubble | 0.9042 |
| Sand | 0.9008 |
---
# Model description
drone-DinoVdeau-produttoria_binary-binary is a model built on top of drone-DinoVdeau-produttoria_binary-binary-large-2024_11_03-batch-size64_freeze model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
---
# Intended uses & limitations
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
---
# Training and evaluation data
Details on the number of images for each class are given in the following table:
| Class | train | test | val | Total |
|:------------------------|--------:|-------:|------:|--------:|
| Acropore_branched | 1483 | 522 | 529 | 2534 |
| Acropore_digitised | 1085 | 371 | 362 | 1818 |
| Acropore_tabular | 486 | 176 | 178 | 840 |
| Algae | 10340 | 3441 | 3461 | 17242 |
| Dead_coral | 3710 | 1252 | 1267 | 6229 |
| Fish | 1462 | 517 | 515 | 2494 |
| Millepore | 746 | 282 | 273 | 1301 |
| No_acropore_encrusting | 1993 | 751 | 728 | 3472 |
| No_acropore_massive | 4450 | 1581 | 1649 | 7680 |
| No_acropore_sub_massive | 3034 | 1102 | 1113 | 5249 |
| Rock | 10225 | 3429 | 3445 | 17099 |
| Rubble | 9353 | 3100 | 3105 | 15558 |
| Sand | 9271 | 3101 | 3132 | 15504 |
---
# Training procedure
## Training hyperparameters
The following hyperparameters were used during training:
- **Number of Epochs**: 88.0
- **Learning Rate**: 0.001
- **Train Batch Size**: 64
- **Eval Batch Size**: 64
- **Optimizer**: Adam
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
- **Freeze Encoder**: Yes
- **Data Augmentation**: Yes
## Data Augmentation
Data were augmented using the following transformations :
Train Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **RandomHorizontalFlip**: probability=0.25
- **RandomVerticalFlip**: probability=0.25
- **ColorJiggle**: probability=0.25
- **RandomPerspective**: probability=0.25
- **Normalize**: probability=1.00
Val Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **Normalize**: probability=1.00
## Training results
Epoch | Validation Loss | Accuracy | F1 Macro | F1 Micro | Learning Rate
--- | --- | --- | --- | --- | ---
1 | 0.3235681354999542 | 0.2630072840790843 | 0.8262109753225342 | 0.5774239185038708 | 0.001
2 | 0.3146470785140991 | 0.24115504682622269 | 0.8378565084377776 | 0.6199165901601139 | 0.001
3 | 0.3090434670448303 | 0.2554630593132154 | 0.8398465111582348 | 0.6043570009634397 | 0.001
4 | 0.30735355615615845 | 0.25624349635796045 | 0.8348980169243037 | 0.600278483167516 | 0.001
5 | 0.30385810136795044 | 0.2515608740894901 | 0.8405948994360434 | 0.6247746971203368 | 0.001
6 | 0.3059956729412079 | 0.2596253902185224 | 0.841987466427932 | 0.6225111439021958 | 0.001
7 | 0.3013758361339569 | 0.28199791883454733 | 0.8387498056289846 | 0.5954695621655504 | 0.001
8 | 0.30131709575653076 | 0.2702913631633715 | 0.8390550208451284 | 0.5974832028652961 | 0.001
9 | 0.30098479986190796 | 0.28407908428720086 | 0.8406665130922214 | 0.5974259992816957 | 0.001
10 | 0.30072343349456787 | 0.27107180020811655 | 0.8376187886791475 | 0.5937940362628795 | 0.001
11 | 0.3035621643066406 | 0.277315296566077 | 0.8348592565387339 | 0.5761905737205768 | 0.001
12 | 0.3012838363647461 | 0.26742976066597296 | 0.838466245156027 | 0.6114755503631268 | 0.001
13 | 0.29778778553009033 | 0.2648283038501561 | 0.8421213122252433 | 0.6145726431106396 | 0.001
14 | 0.29774588346481323 | 0.27341311134235174 | 0.8399742101869762 | 0.605884177295118 | 0.001
15 | 0.29809942841529846 | 0.2666493236212279 | 0.8433503513117323 | 0.6074624445346274 | 0.001
16 | 0.29744812846183777 | 0.27471383975026015 | 0.8394100355835181 | 0.5932952143692389 | 0.001
17 | 0.2983638644218445 | 0.2663891779396462 | 0.8437578624264077 | 0.6146867059353278 | 0.001
18 | 0.3023049235343933 | 0.2762747138397503 | 0.8356339535005088 | 0.5803903225868541 | 0.001
19 | 0.2984697222709656 | 0.2739334027055151 | 0.8423529411764706 | 0.6158875389283108 | 0.001
20 | 0.29680272936820984 | 0.28069719042663893 | 0.8411767731317183 | 0.5984147849283556 | 0.001
21 | 0.30051520466804504 | 0.2702913631633715 | 0.8418969323285377 | 0.6060492619397649 | 0.001
22 | 0.29818177223205566 | 0.27471383975026015 | 0.8374817746302854 | 0.580353532272699 | 0.001
23 | 0.29393449425697327 | 0.27809573361082207 | 0.8436262061960386 | 0.615237110287355 | 0.001
24 | 0.2948347330093384 | 0.27601456815816855 | 0.8453232862164007 | 0.6228721497006335 | 0.001
25 | 0.29676035046577454 | 0.2736732570239334 | 0.8427456149244652 | 0.610255370235793 | 0.001
26 | 0.2955995500087738 | 0.2754942767950052 | 0.8420542140997499 | 0.6045462014226007 | 0.001
27 | 0.29585039615631104 | 0.27653485952133194 | 0.8437684356323902 | 0.6115221375683754 | 0.001
28 | 0.295540988445282 | 0.26925078043704476 | 0.8446938104986479 | 0.6191186747828321 | 0.001
29 | 0.3010655343532562 | 0.2663891779396462 | 0.8437664387164651 | 0.6215750043898619 | 0.001
30 | 0.29214760661125183 | 0.2809573361082206 | 0.8437435686355217 | 0.6025311078598518 | 0.0001
31 | 0.29040178656578064 | 0.28121748178980227 | 0.8439103638567266 | 0.6071651131848005 | 0.0001
32 | 0.29034462571144104 | 0.2809573361082206 | 0.8437194965322373 | 0.6111569473926136 | 0.0001
33 | 0.2888760268688202 | 0.28537981269510926 | 0.8461617038663874 | 0.6202495870793918 | 0.0001
34 | 0.28964364528656006 | 0.2861602497398543 | 0.8446023671361742 | 0.6150504150317478 | 0.0001
35 | 0.28874215483665466 | 0.2866805411030177 | 0.8449244728566273 | 0.611180048847438 | 0.0001
36 | 0.2888963222503662 | 0.28355879292403746 | 0.8447173058645225 | 0.6119874534823754 | 0.0001
37 | 0.288282573223114 | 0.2866805411030177 | 0.8475834540970686 | 0.6255767175486281 | 0.0001
38 | 0.29050976037979126 | 0.28251821019771073 | 0.8452536426724028 | 0.6057239934398935 | 0.0001
39 | 0.28778275847435 | 0.28537981269510926 | 0.8470600182796791 | 0.625366961909805 | 0.0001
40 | 0.2885717749595642 | 0.2809573361082206 | 0.8468000302716884 | 0.622337777946806 | 0.0001
41 | 0.28773826360702515 | 0.2843392299687825 | 0.847323400258903 | 0.6260539681026288 | 0.0001
42 | 0.28776827454566956 | 0.28563995837669093 | 0.8476613005450627 | 0.6199392946357273 | 0.0001
43 | 0.28717148303985596 | 0.28303850156087407 | 0.8479237095716232 | 0.6287571427217789 | 0.0001
44 | 0.28678667545318604 | 0.28407908428720086 | 0.8463665693654939 | 0.6189979239207937 | 0.0001
45 | 0.28698909282684326 | 0.28381893860561913 | 0.8462928555066304 | 0.6235508782461164 | 0.0001
46 | 0.2868472635746002 | 0.28251821019771073 | 0.8459846547314578 | 0.6151318511304835 | 0.0001
47 | 0.28715068101882935 | 0.2845993756503642 | 0.8462129359348595 | 0.6211457155619424 | 0.0001
48 | 0.28661593794822693 | 0.28355879292403746 | 0.8466852933705867 | 0.6231150403485404 | 0.0001
49 | 0.28633347153663635 | 0.28590010405827265 | 0.8460415439387342 | 0.616055362439494 | 0.0001
50 | 0.28642749786376953 | 0.2845993756503642 | 0.8482882700250868 | 0.625458075101288 | 0.0001
51 | 0.2890762686729431 | 0.28485952133194586 | 0.848592785832539 | 0.6278100779578839 | 0.0001
52 | 0.2855978012084961 | 0.2851196670135276 | 0.8464228285561143 | 0.6255462096645672 | 0.0001
53 | 0.2872205674648285 | 0.27887617065556713 | 0.8489991514001897 | 0.6457587856102145 | 0.0001
54 | 0.2855803072452545 | 0.2903225806451613 | 0.8476844874709444 | 0.6243869856844756 | 0.0001
55 | 0.28568968176841736 | 0.2845993756503642 | 0.8475136716266056 | 0.6339630509281279 | 0.0001
56 | 0.28617897629737854 | 0.2866805411030177 | 0.8465597622829039 | 0.6241465491773776 | 0.0001
57 | 0.2870914936065674 | 0.2861602497398543 | 0.845436853426201 | 0.6249269702519318 | 0.0001
58 | 0.2857914865016937 | 0.28121748178980227 | 0.8491941382702348 | 0.6333866717026029 | 0.0001
59 | 0.28617140650749207 | 0.2887617065556712 | 0.8468232576049287 | 0.6178461796051926 | 1e-05
60 | 0.2846605181694031 | 0.28537981269510926 | 0.8485033598045205 | 0.6275748058546806 | 1e-05
61 | 0.2848633825778961 | 0.28303850156087407 | 0.8479865171982329 | 0.6223888517425455 | 1e-05
62 | 0.28548601269721985 | 0.2843392299687825 | 0.8469200122586577 | 0.6247632003821695 | 1e-05
63 | 0.28493326902389526 | 0.2827783558792924 | 0.8488979777323336 | 0.6274806463168713 | 1e-05
64 | 0.28459736704826355 | 0.28225806451612906 | 0.8475187206498287 | 0.6370787064578803 | 1e-05
65 | 0.2860054671764374 | 0.2869406867845994 | 0.8467700785794469 | 0.6240984315849201 | 1e-05
66 | 0.2847185730934143 | 0.28407908428720086 | 0.8481340441736481 | 0.6346693986906206 | 1e-05
67 | 0.28529325127601624 | 0.28537981269510926 | 0.8487528745798691 | 0.6287121285420982 | 1e-05
68 | 0.2852926254272461 | 0.2866805411030177 | 0.8480251642525557 | 0.6321379394582358 | 1e-05
69 | 0.284834623336792 | 0.28355879292403746 | 0.847692190707931 | 0.6397237492354447 | 1e-05
70 | 0.28527727723121643 | 0.28225806451612906 | 0.8492167101827677 | 0.6381143671040704 | 1e-05
71 | 0.28507113456726074 | 0.2882414151925078 | 0.8475971370143149 | 0.6325489300082728 | 1.0000000000000002e-06
72 | 0.28452861309051514 | 0.28485952133194586 | 0.8474255781269963 | 0.6236352127811986 | 1.0000000000000002e-06
73 | 0.28448227047920227 | 0.28121748178980227 | 0.847641772858811 | 0.6333277250193455 | 1.0000000000000002e-06
74 | 0.28447526693344116 | 0.2827783558792924 | 0.8465770953294945 | 0.6300187593616763 | 1.0000000000000002e-06
75 | 0.2851284146308899 | 0.28199791883454733 | 0.8473772748126625 | 0.6235297745568456 | 1.0000000000000002e-06
76 | 0.2859683036804199 | 0.2879812695109261 | 0.847320835674516 | 0.6186062513830065 | 1.0000000000000002e-06
77 | 0.2858298718929291 | 0.28563995837669093 | 0.8459046737621472 | 0.6172786558676017 | 1.0000000000000002e-06
78 | 0.28438833355903625 | 0.2843392299687825 | 0.8480547459130655 | 0.6325947858436887 | 1.0000000000000002e-06
79 | 0.2870919704437256 | 0.2874609781477627 | 0.8472353346431579 | 0.617917490234713 | 1.0000000000000002e-06
80 | 0.28482332825660706 | 0.28381893860561913 | 0.8477330616403465 | 0.6286567457369128 | 1.0000000000000002e-06
81 | 0.2847617268562317 | 0.28537981269510926 | 0.8489678202792957 | 0.6304525529970205 | 1.0000000000000002e-06
82 | 0.28511229157447815 | 0.28590010405827265 | 0.8480416961845967 | 0.6394217270135759 | 1.0000000000000002e-06
83 | 0.284644216299057 | 0.28563995837669093 | 0.8488055562622434 | 0.6255055774993536 | 1.0000000000000002e-06
84 | 0.2857225835323334 | 0.2832986472424558 | 0.848188643119867 | 0.6457553263622914 | 1.0000000000000002e-06
85 | 0.28550758957862854 | 0.28121748178980227 | 0.848818698673405 | 0.6339586571635658 | 1.0000000000000002e-07
86 | 0.284895658493042 | 0.28590010405827265 | 0.8479890588592848 | 0.6362631688004041 | 1.0000000000000002e-07
87 | 0.2845035493373871 | 0.2851196670135276 | 0.8473590201582036 | 0.6327749126527296 | 1.0000000000000002e-07
88 | 0.28541097044944763 | 0.28121748178980227 | 0.8477551536613127 | 0.6370893160624239 | 1.0000000000000002e-07
---
# Framework Versions
- **Transformers**: 4.41.0
- **Pytorch**: 2.5.0+cu124
- **Datasets**: 3.0.2
- **Tokenizers**: 0.19.1