metadata
license: apache-2.0
base_model: facebook/dinov2-large
tags:
- generated_from_trainer
model-index:
- name: >-
drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs
results: []
drone-DinoVdeau-produttoria_binary-probabilities-large-2024_11_03-batch-size64_freeze_probs
This model is a fine-tuned version of facebook/dinov2-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3499
- Rmse: 0.1848
- Mae: 0.1248
- R2: 0.4361
- Explained Variance: 0.4376
- Learning Rate: 1e-05
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rmse | Mae | R2 | Explained Variance | Rate |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 181 | 0.3795 | 0.2067 | 0.1489 | 0.2894 | 0.3009 | 0.001 |
No log | 2.0 | 362 | 0.3674 | 0.1983 | 0.1374 | 0.3517 | 0.3548 | 0.001 |
0.4416 | 3.0 | 543 | 0.3671 | 0.1981 | 0.1414 | 0.3521 | 0.3569 | 0.001 |
0.4416 | 4.0 | 724 | 0.3632 | 0.1952 | 0.1391 | 0.3708 | 0.3749 | 0.001 |
0.4416 | 5.0 | 905 | 0.3679 | 0.1993 | 0.1418 | 0.3453 | 0.3614 | 0.001 |
0.3813 | 6.0 | 1086 | 0.3625 | 0.1951 | 0.1380 | 0.3718 | 0.3743 | 0.001 |
0.3813 | 7.0 | 1267 | 0.3619 | 0.1941 | 0.1348 | 0.3771 | 0.3837 | 0.001 |
0.3813 | 8.0 | 1448 | 0.3613 | 0.1935 | 0.1368 | 0.3788 | 0.3809 | 0.001 |
0.3785 | 9.0 | 1629 | 0.3604 | 0.1934 | 0.1354 | 0.3812 | 0.3833 | 0.001 |
0.3785 | 10.0 | 1810 | 0.3613 | 0.1932 | 0.1338 | 0.3812 | 0.3844 | 0.001 |
0.3785 | 11.0 | 1991 | 0.3604 | 0.1931 | 0.1323 | 0.3845 | 0.3857 | 0.001 |
0.3743 | 12.0 | 2172 | 0.3618 | 0.1942 | 0.1386 | 0.3774 | 0.3844 | 0.001 |
0.3743 | 13.0 | 2353 | 0.3593 | 0.1925 | 0.1343 | 0.3875 | 0.3894 | 0.001 |
0.3732 | 14.0 | 2534 | 0.3605 | 0.1932 | 0.1352 | 0.3831 | 0.3863 | 0.001 |
0.3732 | 15.0 | 2715 | 0.3605 | 0.1935 | 0.1366 | 0.3817 | 0.3836 | 0.001 |
0.3732 | 16.0 | 2896 | 0.3600 | 0.1922 | 0.1312 | 0.3882 | 0.3910 | 0.001 |
0.3733 | 17.0 | 3077 | 0.3629 | 0.1932 | 0.1378 | 0.3843 | 0.3882 | 0.001 |
0.3733 | 18.0 | 3258 | 0.3615 | 0.1943 | 0.1323 | 0.3768 | 0.3840 | 0.001 |
0.3733 | 19.0 | 3439 | 0.3595 | 0.1922 | 0.1330 | 0.3895 | 0.3911 | 0.001 |
0.3723 | 20.0 | 3620 | 0.3566 | 0.1902 | 0.1330 | 0.4006 | 0.4041 | 0.0001 |
0.3723 | 21.0 | 3801 | 0.3549 | 0.1890 | 0.1306 | 0.4076 | 0.4089 | 0.0001 |
0.3723 | 22.0 | 3982 | 0.3545 | 0.1886 | 0.1308 | 0.4096 | 0.4108 | 0.0001 |
0.3683 | 23.0 | 4163 | 0.3545 | 0.1882 | 0.1303 | 0.4116 | 0.4124 | 0.0001 |
0.3683 | 24.0 | 4344 | 0.3540 | 0.1882 | 0.1317 | 0.4121 | 0.4131 | 0.0001 |
0.3654 | 25.0 | 4525 | 0.3546 | 0.1883 | 0.1284 | 0.4113 | 0.4126 | 0.0001 |
0.3654 | 26.0 | 4706 | 0.3529 | 0.1876 | 0.1264 | 0.4154 | 0.4165 | 0.0001 |
0.3654 | 27.0 | 4887 | 0.3533 | 0.1874 | 0.1294 | 0.4166 | 0.4177 | 0.0001 |
0.3652 | 28.0 | 5068 | 0.3532 | 0.1876 | 0.1294 | 0.4160 | 0.4169 | 0.0001 |
0.3652 | 29.0 | 5249 | 0.3531 | 0.1871 | 0.1302 | 0.4184 | 0.4192 | 0.0001 |
0.3652 | 30.0 | 5430 | 0.3536 | 0.1878 | 0.1292 | 0.4148 | 0.4160 | 0.0001 |
0.3628 | 31.0 | 5611 | 0.3531 | 0.1877 | 0.1267 | 0.4152 | 0.4175 | 0.0001 |
0.3628 | 32.0 | 5792 | 0.3528 | 0.1876 | 0.1288 | 0.4162 | 0.4168 | 0.0001 |
0.3628 | 33.0 | 5973 | 0.3515 | 0.1864 | 0.1273 | 0.4225 | 0.4230 | 0.0001 |
0.3638 | 34.0 | 6154 | 0.3520 | 0.1868 | 0.1263 | 0.4202 | 0.4216 | 0.0001 |
0.3638 | 35.0 | 6335 | 0.3518 | 0.1866 | 0.1278 | 0.4215 | 0.4220 | 0.0001 |
0.3618 | 36.0 | 6516 | 0.3523 | 0.1871 | 0.1285 | 0.4193 | 0.4196 | 0.0001 |
0.3618 | 37.0 | 6697 | 0.3516 | 0.1866 | 0.1273 | 0.4217 | 0.4225 | 0.0001 |
0.3618 | 38.0 | 6878 | 0.3527 | 0.1878 | 0.1274 | 0.4157 | 0.4184 | 0.0001 |
0.3611 | 39.0 | 7059 | 0.3512 | 0.1862 | 0.1266 | 0.4242 | 0.4249 | 0.0001 |
0.3611 | 40.0 | 7240 | 0.3521 | 0.1866 | 0.1302 | 0.4224 | 0.4237 | 0.0001 |
0.3611 | 41.0 | 7421 | 0.3507 | 0.1858 | 0.1266 | 0.4264 | 0.4275 | 0.0001 |
0.3613 | 42.0 | 7602 | 0.3513 | 0.1860 | 0.1278 | 0.4263 | 0.4272 | 0.0001 |
0.3613 | 43.0 | 7783 | 0.3511 | 0.1860 | 0.1274 | 0.4262 | 0.4273 | 0.0001 |
0.3613 | 44.0 | 7964 | 0.3514 | 0.1859 | 0.1244 | 0.4266 | 0.4282 | 0.0001 |
0.3603 | 45.0 | 8145 | 0.3525 | 0.1863 | 0.1273 | 0.4249 | 0.4276 | 0.0001 |
0.3603 | 46.0 | 8326 | 0.3505 | 0.1856 | 0.1258 | 0.4275 | 0.4286 | 0.0001 |
0.3603 | 47.0 | 8507 | 0.3517 | 0.1866 | 0.1250 | 0.4231 | 0.4258 | 0.0001 |
0.3603 | 48.0 | 8688 | 0.3504 | 0.1856 | 0.1259 | 0.4286 | 0.4292 | 0.0001 |
0.3603 | 49.0 | 8869 | 0.3507 | 0.1857 | 0.1272 | 0.4274 | 0.4284 | 0.0001 |
0.3604 | 50.0 | 9050 | 0.3516 | 0.1857 | 0.1283 | 0.4280 | 0.4289 | 0.0001 |
0.3604 | 51.0 | 9231 | 0.3529 | 0.1867 | 0.1288 | 0.4227 | 0.4282 | 0.0001 |
0.3604 | 52.0 | 9412 | 0.3506 | 0.1857 | 0.1268 | 0.4282 | 0.4295 | 0.0001 |
0.3592 | 53.0 | 9593 | 0.3505 | 0.1856 | 0.1273 | 0.4286 | 0.4302 | 0.0001 |
0.3592 | 54.0 | 9774 | 0.3502 | 0.1854 | 0.1266 | 0.4300 | 0.4304 | 0.0001 |
0.3592 | 55.0 | 9955 | 0.3501 | 0.1854 | 0.1251 | 0.4299 | 0.4319 | 0.0001 |
0.3601 | 56.0 | 10136 | 0.3507 | 0.1858 | 0.1243 | 0.4273 | 0.4294 | 0.0001 |
0.3601 | 57.0 | 10317 | 0.3509 | 0.1860 | 0.1253 | 0.4274 | 0.4297 | 0.0001 |
0.3601 | 58.0 | 10498 | 0.3493 | 0.1846 | 0.1251 | 0.4338 | 0.4354 | 0.0001 |
0.3601 | 59.0 | 10679 | 0.3501 | 0.1855 | 0.1241 | 0.4282 | 0.4299 | 0.0001 |
0.3601 | 60.0 | 10860 | 0.3501 | 0.1852 | 0.1259 | 0.4303 | 0.4325 | 0.0001 |
0.3588 | 61.0 | 11041 | 0.3498 | 0.1850 | 0.1264 | 0.4305 | 0.4310 | 0.0001 |
0.3588 | 62.0 | 11222 | 0.3498 | 0.1850 | 0.1265 | 0.4323 | 0.4333 | 0.0001 |
0.3588 | 63.0 | 11403 | 0.3502 | 0.1851 | 0.1270 | 0.4321 | 0.4339 | 0.0001 |
0.3579 | 64.0 | 11584 | 0.3500 | 0.1853 | 0.1256 | 0.4300 | 0.4312 | 0.0001 |
0.3579 | 65.0 | 11765 | 0.3501 | 0.1854 | 0.1280 | 0.4299 | 0.4304 | 1e-05 |
0.3579 | 66.0 | 11946 | 0.3493 | 0.1847 | 0.1253 | 0.4336 | 0.4342 | 1e-05 |
0.3564 | 67.0 | 12127 | 0.3494 | 0.1847 | 0.1261 | 0.4334 | 0.4340 | 1e-05 |
0.3564 | 68.0 | 12308 | 0.3500 | 0.1856 | 0.1261 | 0.4291 | 0.4307 | 1e-05 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1