Edit model card

resnet-50-linearhead-2024_03_12-with_data_aug_batch-size32_epochs93_freeze

DinoVd'eau is a fine-tuned version of microsoft/resnet-50 on the multilabel_complete_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1518
  • F1 Micro: 0.7545
  • F1 Macro: 0.6309
  • Roc Auc: 0.8276
  • Accuracy: 0.4069
  • Learning Rate: 1e-05

Model description

DinoVd'eau is a model built on top of dinov2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.

Training and evaluation data

Details on the number of images for each class are given in the following table:

train val test Total
Acropore_branched 804 202 200 1206
Acropore_digitised 465 108 101 674
Acropore_tabular 964 276 267 1507
Algae_assembly 2172 692 698 3562
Algae_limestone 1327 439 441 2207
Algae_sodding 2079 676 671 3426
Dead_coral 1126 358 355 1839
Fish 874 243 242 1359
Human_object 407 135 136 678
Living_coral 1765 580 571 2916
Millepore 350 119 102 571
No_acropore_encrusting 411 142 129 682
No_acropore_foliaceous 212 34 39 285
No_acropore_massive 921 317 310 1548
No_acropore_sub_massive 1205 362 363 1930
Rock 3736 1218 1217 6171
Sand 3594 1202 1194 5990
Scrap 2121 724 741 3586
Sea_cucumber 781 254 265 1300
Sea_urchins 189 60 72 321
Sponge 226 75 88 389
Syringodium_isoetifolium 1171 386 392 1949
Thalassodendron_ciliatum 783 261 260 1304
Useless 587 195 195 977

Training procedure

Data Augmentation

Data were augmented using the following transformations :

  • training transformations : Sequential( (0): PreProcess() (1): Resize(output_size=(518, 518), p=1.0, p_batch=1.0, same_on_batch=True, size=(518, 518), side=short, resample=bilinear, align_corners=True, antialias=False) (2): RandomHorizontalFlip(p=0.25, p_batch=1.0, same_on_batch=False) (3): RandomVerticalFlip(p=0.25, p_batch=1.0, same_on_batch=False) (4): ColorJiggle(brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.25, p_batch=1.0, same_on_batch=False) (5): RandomPerspective(distortion_scale=0.5, p=0.25, p_batch=1.0, same_on_batch=False, align_corners=False, resample=bilinear) (6): Normalize(p=1.0, p_batch=1.0, same_on_batch=True, mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250])) )
  • validation transformations : Sequential( (0): PreProcess() (1): Resize(output_size=(518, 518), p=1.0, p_batch=1.0, same_on_batch=True, size=(518, 518), side=short, resample=bilinear, align_corners=True, antialias=False) (2): Normalize(p=1.0, p_batch=1.0, same_on_batch=True, mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250])) )

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • freeze_encoder: True
  • num_epochs: 93

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Roc Auc Accuracy Rate
No log 1.0 274 0.2237 0.5839 0.2834 0.7176 0.1952 0.001
0.2683 2.0 548 0.1895 0.6773 0.4549 0.7743 0.3055 0.001
0.2683 3.0 822 0.1786 0.7021 0.5202 0.7911 0.3539 0.001
0.2058 4.0 1096 0.1715 0.7198 0.5666 0.8058 0.3667 0.001
0.2058 5.0 1370 0.1662 0.7220 0.5718 0.8050 0.3768 0.001
0.1916 6.0 1644 0.1648 0.7155 0.5721 0.7980 0.3796 0.001
0.1916 7.0 1918 0.1618 0.7281 0.5973 0.8082 0.3810 0.001
0.1858 8.0 2192 0.1598 0.7375 0.6061 0.8166 0.3855 0.001
0.1858 9.0 2466 0.1599 0.7440 0.6209 0.8223 0.3911 0.001
0.1839 10.0 2740 0.1584 0.7382 0.6047 0.8173 0.3949 0.001
0.1815 11.0 3014 0.1569 0.7414 0.6068 0.8186 0.3960 0.001
0.1815 12.0 3288 0.1585 0.7257 0.5953 0.8043 0.3963 0.001
0.1807 13.0 3562 0.1581 0.7514 0.6286 0.8311 0.3967 0.001
0.1807 14.0 3836 0.1565 0.7453 0.6230 0.8224 0.4022 0.001
0.1795 15.0 4110 0.1549 0.7504 0.6253 0.8262 0.3991 0.001
0.1795 16.0 4384 0.1573 0.7446 0.6290 0.8214 0.3939 0.001
0.178 17.0 4658 0.1551 0.7519 0.6287 0.8281 0.4026 0.001
0.178 18.0 4932 0.1570 0.7430 0.6155 0.8203 0.3914 0.001
0.1764 19.0 5206 0.1558 0.7480 0.6287 0.8236 0.3991 0.001
0.1764 20.0 5480 0.1574 0.7403 0.6085 0.8164 0.4001 0.001
0.1775 21.0 5754 0.1561 0.7532 0.6246 0.8302 0.4029 0.001
0.177 22.0 6028 0.1545 0.7596 0.6431 0.8378 0.3974 0.0001
0.177 23.0 6302 0.1556 0.7472 0.6292 0.8233 0.4026 0.0001
0.1762 24.0 6576 0.1548 0.7528 0.6343 0.8283 0.3994 0.0001
0.1762 25.0 6850 0.1554 0.7468 0.6225 0.8222 0.3994 0.0001
0.1759 26.0 7124 0.1548 0.7529 0.6326 0.8297 0.3977 0.0001
0.1759 27.0 7398 0.1552 0.7516 0.6352 0.8282 0.3970 0.0001
0.1752 28.0 7672 0.1543 0.7523 0.6328 0.8277 0.4092 0.0001
0.1752 29.0 7946 0.1545 0.7506 0.6312 0.8265 0.4019 0.0001
0.1757 30.0 8220 0.1550 0.7554 0.6394 0.8340 0.4040 0.0001
0.1757 31.0 8494 0.1554 0.7512 0.6345 0.8279 0.4022 0.0001
0.1758 32.0 8768 0.1545 0.7513 0.6302 0.8275 0.4033 0.0001
0.1755 33.0 9042 0.1555 0.7456 0.6261 0.8223 0.3977 0.0001
0.1755 34.0 9316 0.1533 0.7515 0.6307 0.8260 0.4109 0.0001
0.1752 35.0 9590 0.1551 0.7506 0.6325 0.8261 0.4054 0.0001
0.1752 36.0 9864 0.1530 0.7539 0.6299 0.8287 0.4026 0.0001
0.1752 37.0 10138 0.1546 0.7464 0.6270 0.8223 0.4036 0.0001
0.1752 38.0 10412 0.1549 0.7539 0.6364 0.8314 0.3987 0.0001
0.1763 39.0 10686 0.1547 0.7579 0.6421 0.8361 0.3977 0.0001
0.1763 40.0 10960 0.1544 0.7539 0.6345 0.8302 0.4005 0.0001
0.176 41.0 11234 0.1557 0.7536 0.6347 0.8298 0.4015 0.0001
0.1758 42.0 11508 0.1540 0.7474 0.6277 0.8226 0.3960 0.0001
0.1758 43.0 11782 0.1548 0.7578 0.6384 0.8374 0.3970 1e-05
0.1764 44.0 12056 0.1543 0.7582 0.6398 0.8352 0.4012 1e-05
0.1764 45.0 12330 0.1544 0.7448 0.6206 0.8196 0.3991 1e-05
0.1746 46.0 12604 0.1546 0.7452 0.6223 0.8208 0.4050 1e-05

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lombardata/resnet-50-linearhead-2024_03_12-with_data_aug_batch-size32_epochs93_freeze

Finetuned
(123)
this model