File size: 6,448 Bytes
027dee0
c2dc5e3
 
027dee0
 
 
c2dc5e3
 
027dee0
 
 
 
 
 
 
 
 
 
 
 
 
c2dc5e3
027dee0
c2dc5e3
 
 
 
 
027dee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
language:
- eng
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- multilabel-image-classification
- multilabel
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resnet-50-linearhead-2024_03_12-with_data_aug_batch-size32_epochs93_freeze
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resnet-50-linearhead-2024_03_12-with_data_aug_batch-size32_epochs93_freeze

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the multilabel_complete_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1518
- F1 Micro: 0.7545
- F1 Macro: 0.6309
- Roc Auc: 0.8276
- Accuracy: 0.4069
- Learning Rate: 1e-05

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 93

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1 Micro | F1 Macro | Roc Auc | Accuracy | Rate   |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-------:|:--------:|:------:|
| No log        | 1.0   | 274   | 0.2237          | 0.5839   | 0.2834   | 0.7176  | 0.1952   | 0.001  |
| 0.2683        | 2.0   | 548   | 0.1895          | 0.6773   | 0.4549   | 0.7743  | 0.3055   | 0.001  |
| 0.2683        | 3.0   | 822   | 0.1786          | 0.7021   | 0.5202   | 0.7911  | 0.3539   | 0.001  |
| 0.2058        | 4.0   | 1096  | 0.1715          | 0.7198   | 0.5666   | 0.8058  | 0.3667   | 0.001  |
| 0.2058        | 5.0   | 1370  | 0.1662          | 0.7220   | 0.5718   | 0.8050  | 0.3768   | 0.001  |
| 0.1916        | 6.0   | 1644  | 0.1648          | 0.7155   | 0.5721   | 0.7980  | 0.3796   | 0.001  |
| 0.1916        | 7.0   | 1918  | 0.1618          | 0.7281   | 0.5973   | 0.8082  | 0.3810   | 0.001  |
| 0.1858        | 8.0   | 2192  | 0.1598          | 0.7375   | 0.6061   | 0.8166  | 0.3855   | 0.001  |
| 0.1858        | 9.0   | 2466  | 0.1599          | 0.7440   | 0.6209   | 0.8223  | 0.3911   | 0.001  |
| 0.1839        | 10.0  | 2740  | 0.1584          | 0.7382   | 0.6047   | 0.8173  | 0.3949   | 0.001  |
| 0.1815        | 11.0  | 3014  | 0.1569          | 0.7414   | 0.6068   | 0.8186  | 0.3960   | 0.001  |
| 0.1815        | 12.0  | 3288  | 0.1585          | 0.7257   | 0.5953   | 0.8043  | 0.3963   | 0.001  |
| 0.1807        | 13.0  | 3562  | 0.1581          | 0.7514   | 0.6286   | 0.8311  | 0.3967   | 0.001  |
| 0.1807        | 14.0  | 3836  | 0.1565          | 0.7453   | 0.6230   | 0.8224  | 0.4022   | 0.001  |
| 0.1795        | 15.0  | 4110  | 0.1549          | 0.7504   | 0.6253   | 0.8262  | 0.3991   | 0.001  |
| 0.1795        | 16.0  | 4384  | 0.1573          | 0.7446   | 0.6290   | 0.8214  | 0.3939   | 0.001  |
| 0.178         | 17.0  | 4658  | 0.1551          | 0.7519   | 0.6287   | 0.8281  | 0.4026   | 0.001  |
| 0.178         | 18.0  | 4932  | 0.1570          | 0.7430   | 0.6155   | 0.8203  | 0.3914   | 0.001  |
| 0.1764        | 19.0  | 5206  | 0.1558          | 0.7480   | 0.6287   | 0.8236  | 0.3991   | 0.001  |
| 0.1764        | 20.0  | 5480  | 0.1574          | 0.7403   | 0.6085   | 0.8164  | 0.4001   | 0.001  |
| 0.1775        | 21.0  | 5754  | 0.1561          | 0.7532   | 0.6246   | 0.8302  | 0.4029   | 0.001  |
| 0.177         | 22.0  | 6028  | 0.1545          | 0.7596   | 0.6431   | 0.8378  | 0.3974   | 0.0001 |
| 0.177         | 23.0  | 6302  | 0.1556          | 0.7472   | 0.6292   | 0.8233  | 0.4026   | 0.0001 |
| 0.1762        | 24.0  | 6576  | 0.1548          | 0.7528   | 0.6343   | 0.8283  | 0.3994   | 0.0001 |
| 0.1762        | 25.0  | 6850  | 0.1554          | 0.7468   | 0.6225   | 0.8222  | 0.3994   | 0.0001 |
| 0.1759        | 26.0  | 7124  | 0.1548          | 0.7529   | 0.6326   | 0.8297  | 0.3977   | 0.0001 |
| 0.1759        | 27.0  | 7398  | 0.1552          | 0.7516   | 0.6352   | 0.8282  | 0.3970   | 0.0001 |
| 0.1752        | 28.0  | 7672  | 0.1543          | 0.7523   | 0.6328   | 0.8277  | 0.4092   | 0.0001 |
| 0.1752        | 29.0  | 7946  | 0.1545          | 0.7506   | 0.6312   | 0.8265  | 0.4019   | 0.0001 |
| 0.1757        | 30.0  | 8220  | 0.1550          | 0.7554   | 0.6394   | 0.8340  | 0.4040   | 0.0001 |
| 0.1757        | 31.0  | 8494  | 0.1554          | 0.7512   | 0.6345   | 0.8279  | 0.4022   | 0.0001 |
| 0.1758        | 32.0  | 8768  | 0.1545          | 0.7513   | 0.6302   | 0.8275  | 0.4033   | 0.0001 |
| 0.1755        | 33.0  | 9042  | 0.1555          | 0.7456   | 0.6261   | 0.8223  | 0.3977   | 0.0001 |
| 0.1755        | 34.0  | 9316  | 0.1533          | 0.7515   | 0.6307   | 0.8260  | 0.4109   | 0.0001 |
| 0.1752        | 35.0  | 9590  | 0.1551          | 0.7506   | 0.6325   | 0.8261  | 0.4054   | 0.0001 |
| 0.1752        | 36.0  | 9864  | 0.1530          | 0.7539   | 0.6299   | 0.8287  | 0.4026   | 0.0001 |
| 0.1752        | 37.0  | 10138 | 0.1546          | 0.7464   | 0.6270   | 0.8223  | 0.4036   | 0.0001 |
| 0.1752        | 38.0  | 10412 | 0.1549          | 0.7539   | 0.6364   | 0.8314  | 0.3987   | 0.0001 |
| 0.1763        | 39.0  | 10686 | 0.1547          | 0.7579   | 0.6421   | 0.8361  | 0.3977   | 0.0001 |
| 0.1763        | 40.0  | 10960 | 0.1544          | 0.7539   | 0.6345   | 0.8302  | 0.4005   | 0.0001 |
| 0.176         | 41.0  | 11234 | 0.1557          | 0.7536   | 0.6347   | 0.8298  | 0.4015   | 0.0001 |
| 0.1758        | 42.0  | 11508 | 0.1540          | 0.7474   | 0.6277   | 0.8226  | 0.3960   | 0.0001 |
| 0.1758        | 43.0  | 11782 | 0.1548          | 0.7578   | 0.6384   | 0.8374  | 0.3970   | 1e-05  |
| 0.1764        | 44.0  | 12056 | 0.1543          | 0.7582   | 0.6398   | 0.8352  | 0.4012   | 1e-05  |
| 0.1764        | 45.0  | 12330 | 0.1544          | 0.7448   | 0.6206   | 0.8196  | 0.3991   | 1e-05  |
| 0.1746        | 46.0  | 12604 | 0.1546          | 0.7452   | 0.6223   | 0.8208  | 0.4050   | 1e-05  |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.15.0