See axolotl config
axolotl version: 0.4.1
base_model: lordspline/mergestein
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: lordspline/scidata
type: sharegpt
conversation: chatml
- path: lordspline/wizard_v2_196k_unfiltered
type: sharegpt
conversation: chatml
- path: lordspline/ultrainteract
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.002
output_dir: ./mergestein
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: mergestein
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: lordspline/mergestein
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0001 # look
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
use_reentrant: true # look
early_stopping_patience:
resume_from_checkpoint: # ./mergestein/checkpoint-8015
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 300
debug:
# deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|end_of_text|>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
mergestein
This model is a fine-tuned version of lordspline/mergestein on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2069
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4476 | 1.0 | 48435 | 1.2069 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.1.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 455
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for lordspline/mergestein
Unable to build the model tree, the base model loops to the model itself. Learn more.