File size: 2,992 Bytes
e4b1b40 1abd6ae e4b1b40 1abd6ae e4b1b40 1abd6ae e4b1b40 d8e4832 e4b1b40 6c0605a e4b1b40 d8e4832 e4b1b40 6c0605a e4b1b40 643e5ff e4b1b40 643e5ff e4b1b40 1abd6ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: mit
datasets:
- scb_mt_enth_2020
- oscar
- wikipedia
- best2009
language:
- th
library_name: transformers
---
# HoogBERTa
This repository includes the Thai pretrained language representation (HoogBERTa_base) and the fine-tuned model for multitask sequence labeling.
# Documentation
## Prerequisite
Since we use subword-nmt BPE encoding, input needs to be pre-tokenize using [BEST](https://huggingface.co/datasets/best2009) standard before inputting into HoogBERTa
```
pip install attacut
```
## Getting Start
To initialize the model from hub, use the following commands
```python
from transformers import AutoTokenizer, AutoModel
from attacut import tokenize
tokenizer = AutoTokenizer.from_pretrained("new5558/HoogBERTa")
model = AutoModel.from_pretrained("new5558/HoogBERTa")
```
To annotate POS, NE, and clause boundary, use the following commands
```
```
To extract token features, based on the RoBERTa architecture, use the following commands
```python
with torch.no_grad():
model.eval()
sentence = "วันที่ 12 มีนาคมนี้ ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"
all_sent = []
sentences = sentence.split(" ")
for sent in sentences:
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
sentence = " _ ".join(all_sent)
tokenized_text = tokenizer(sentence, return_tensors = 'pt')
token_ids = tokenized_text['input_ids']
features = model(**tokenized_text)
```
For batch processing,
```python
with torch.no_grad():
model.eval()
sentenceL = ["วันที่ 12 มีนาคมนี้","ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"]
inputList = []
for sentX in sentenceL:
sentences = sentX.split(" ")
all_sent = []
for sent in sentences:
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
sentence = " _ ".join(all_sent)
inputList.append(sentence)
tokenized_text = tokenizer(inputList, padding = True, return_tensors = 'pt')
token_ids = tokenized_text['input_ids']
features = model(**tokenized_text)
```
To use HoogBERTa as an embedding layer, use
```python
with torch.no_grad():
features = model(token_ids) # where token_ids is a tensor with type "long".
```
# Citation
Please cite as:
``` bibtex
@inproceedings{porkaew2021hoogberta,
title = {HoogBERTa: Multi-task Sequence Labeling using Thai Pretrained Language Representation},
author = {Peerachet Porkaew, Prachya Boonkwan and Thepchai Supnithi},
booktitle = {The Joint International Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2021)},
year = {2021},
address={Online}
}
```
Download full-text [PDF](https://drive.google.com/file/d/1hwdyIssR5U_knhPE2HJigrc0rlkqWeLF/view?usp=sharing)
Check out the code on [Github](https://github.com/lstnlp/HoogBERTa) |