metadata
language:
- 'no'
- nb
- nn
inference: false
tags:
- BERT
- NorBERT
- Norwegian
- encoder
license: cc-by-4.0
NorBERT 3 base

The official release of a new generation of NorBERT language models described in paper NorBench — A Benchmark for Norwegian Language Models. Plese read the paper to learn more details about the model.
Other sizes:
Generative NorT5 siblings:
Example usage
This model currently needs a custom wrapper from modeling_norbert.py
. Then you can use it like this:
import torch
from transformers import AutoTokenizer
from modeling_norbert import NorbertForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("path/to/folder")
bert = NorbertForMaskedLM.from_pretrained("path/to/folder")
mask_id = tokenizer.convert_tokens_to_ids("[MASK]")
input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt")
output_p = bert(**input_text)
output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids)
# should output: '[CLS] Nå ønsker de seg en ny bolig.[SEP]'
print(tokenizer.decode(output_text[0].tolist()))
The following classes are currently implemented: NorbertForMaskedLM
, NorbertForSequenceClassification
, NorbertForTokenClassification
, NorbertForQuestionAnswering
and NorbertForMultipleChoice
.
Cite us
@inproceedings{
samuel2023norbench,
title={NorBench -- A Benchmark for Norwegian Language Models},
author={David Samuel and Andrey Kutuzov and Samia Touileb and Erik Velldal and Lilja {\O}vrelid and Egil R{\o}nningstad and Elina Sigdel and Anna Sergeevna Palatkina},
booktitle={The 24rd Nordic Conference on Computational Linguistics},
year={2023},
url={https://openreview.net/forum?id=WgxNONkAbz}
}