Sentiment Analysis
Collection
Datasets and models fine-tuned for sentiment analysis
•
7 items
•
Updated
This model is a fine-tuned version of ltg/norbert3-base for text classification.
The dataset used for fine-tuning is ltg/norec_sentence, the mixed
subset with four sentement categories:
[0]: Negative,
[1]: Positive,
[2]: Neutral
[0,1]: Mixed
You can use this model for inference as follows:
>>> from transformers import pipeline
>>> origin = "ltg/norbert3-large_sentence-sentiment"
>>> pipe = transformers.pipeline( "text-classification",
... model = origin,
... trust_remote_code=origin.startswith("ltg/norbert3"),
... config= origin,
... tokenizer = AutoTokenizer.from_pretrained(origin)
... )
>>> preds = pipe(["Hans hese, litt såre stemme kler bluesen, men denne platen kommer neppe til å bli blant hans største kommersielle suksesser.",
... "Borten-regjeringen gjorde ikke jobben sin." ])
>>> for p in preds:
... print(p)
Output:
The model 'NorbertForSequenceClassification' is not supported for text-classification. Supported models are ['AlbertForSequenceClassification', ...
{'label': 'Mixed', 'score': 0.7435498237609863}
{'label': 'Negative', 'score': 0.765734851360321}
Category | F1 | |
---|---|---|
Negative_F1 | 0.670241 | |
Positive_F1 | 0.832918 | |
Neutral_F1 | 0.850082 | |
Mixed_F1 | 0.580645 | |
Weighted_avg_F1 | 0.799663 |