norbert3-small / README.md
davda54's picture
Update README.md
0e1ac73 verified
|
raw
history blame
3.15 kB
---
language:
- 'no'
- nb
- nn
inference: false
tags:
- BERT
- NorBERT
- Norwegian
- encoder
license: apache-2.0
---
# NorBERT 3 small
<img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=12.5%>
The official release of a new generation of NorBERT language models described in paper [**NorBench — A Benchmark for Norwegian Language Models**](https://aclanthology.org/2023.nodalida-1.61/). Plese read the paper to learn more details about the model.
## Other sizes:
- [NorBERT 3 xs (15M)](https://huggingface.co/ltg/norbert3-xs)
- [NorBERT 3 small (40M)](https://huggingface.co/ltg/norbert3-small)
- [NorBERT 3 base (123M)](https://huggingface.co/ltg/norbert3-base)
- [NorBERT 3 large (323M)](https://huggingface.co/ltg/norbert3-large)
## Generative NorT5 siblings:
- [NorT5 xs (32M)](https://huggingface.co/ltg/nort5-xs)
- [NorT5 small (88M)](https://huggingface.co/ltg/nort5-small)
- [NorT5 base (228M)](https://huggingface.co/ltg/nort5-base)
- [NorT5 large (808M)](https://huggingface.co/ltg/nort5-large)
## Example usage
This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`.
```python
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("ltg/norbert3-small")
model = AutoModelForMaskedLM.from_pretrained("ltg/norbert3-small", trust_remote_code=True)
mask_id = tokenizer.convert_tokens_to_ids("[MASK]")
input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt")
output_p = model(**input_text)
output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids)
# should output: '[CLS] Nå ønsker de seg en ny bolig.[SEP]'
print(tokenizer.decode(output_text[0].tolist()))
```
The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`.
## Cite us
```bibtex
@inproceedings{samuel-etal-2023-norbench,
title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models",
author = "Samuel, David and
Kutuzov, Andrey and
Touileb, Samia and
Velldal, Erik and
{\O}vrelid, Lilja and
R{\o}nningstad, Egil and
Sigdel, Elina and
Palatkina, Anna",
booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
month = may,
year = "2023",
address = "T{\'o}rshavn, Faroe Islands",
publisher = "University of Tartu Library",
url = "https://aclanthology.org/2023.nodalida-1.61",
pages = "618--633",
abstract = "We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench.",
}
```