|
--- |
|
language: |
|
- 'no' |
|
- nb |
|
- nn |
|
- en |
|
inference: false |
|
tags: |
|
- Norwegian |
|
- English |
|
- translation |
|
license: cc-by-4.0 |
|
pipeline_tag: translation |
|
--- |
|
|
|
# NorT5 base finetuned for English ↔ Norwegian (Bokmål or Nynorsk, all 6 directions) translation |
|
|
|
<img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=12.5%> |
|
|
|
|
|
|
|
## Example usage |
|
|
|
This model is specifically finetuned for translating documents in any direction between Norwegian Bokmål, Norwegian Nynorsk and English. |
|
Unlike traditional NMT models, it is trained on paragraph-to-paragraph translation – the translation quality is thus better if you feed it whole paragraphs instead of segmented sentences. |
|
|
|
A simple example of how to use this model can be found in the `translate.py` file: |
|
|
|
```python |
|
import torch |
|
import transformers |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
from transformers.generation import LogitsProcessor |
|
|
|
|
|
class RepetitionPenaltyLogitsProcessor(LogitsProcessor): |
|
def __init__(self, penalty: float, model): |
|
last_bias = model.classifier.nonlinearity[-1].bias.data |
|
last_bias = torch.nn.functional.log_softmax(last_bias) |
|
self.penalty = penalty * (last_bias - last_bias.max()) |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
penalized_score = torch.gather(scores + self.penalty.unsqueeze(0).to(input_ids.device), 1, input_ids).to(scores.dtype) |
|
scores.scatter_(1, input_ids, penalized_score) |
|
return scores |
|
|
|
|
|
class Translator: |
|
def __init__(self, model_path="ltg/nort5-base-en-no-translation", device="cpu"): |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
self.cls_index = self.tokenizer.convert_tokens_to_ids("[CLS]") |
|
self.sep_index = self.tokenizer.convert_tokens_to_ids("[SEP]") |
|
self.eos_index = self.tokenizer.convert_tokens_to_ids("[EOS]") |
|
self.pad_index = self.tokenizer.convert_tokens_to_ids("[PAD]") |
|
self.eng_index = self.tokenizer.convert_tokens_to_ids(">>eng<<") |
|
self.nob_index = self.tokenizer.convert_tokens_to_ids(">>nob<<") |
|
self.nno_index = self.tokenizer.convert_tokens_to_ids(">>nno<<") |
|
|
|
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path, trust_remote_code=True) |
|
|
|
self.device = device |
|
print(f"SYSTEM: Running on {self.device}", flush=True) |
|
|
|
self.model = self.model.to(device) |
|
self.model.eval() |
|
|
|
print(f"Sucessfully loaded the model to the memory") |
|
|
|
self.LANGUAGE_IDS = { |
|
"en": self.eng_index, |
|
"nb": self.nob_index, |
|
"nn": self.nno_index |
|
} |
|
|
|
def __call__(self, source, source_language, target_language): |
|
source = [s.strip() for s in source.split('\n')] |
|
source_subwords = self.tokenizer(source).input_ids |
|
source_subwords = [[self.cls_index, self.LANGUAGE_IDS[target_language], self.LANGUAGE_IDS[source_language]] + s + [self.sep_index] for s in source_subwords] |
|
source_subwords = [torch.tensor(s) for s in source_subwords] |
|
source_subwords = torch.nn.utils.rnn.pad_sequence(source_subwords, batch_first=True, padding_value=self.pad_index) |
|
source_subwords = source_subwords[:, :512].to(self.device) |
|
|
|
def generate(model, **kwargs): |
|
with torch.inference_mode(): |
|
with torch.autocast(enabled=self.device != "cpu", device_type="cuda", dtype=torch.bfloat16): |
|
return model.generate(**kwargs) |
|
|
|
generate_kwargs = dict( |
|
input_ids=source_subwords, |
|
attention_mask=(source_subwords != self.pad_index).long(), |
|
max_new_tokens = 512-1, |
|
num_beams=8, |
|
length_penalty=1.6, |
|
early_stopping=True, |
|
do_sample=False, |
|
use_cache=True, |
|
logits_processor=[RepetitionPenaltyLogitsProcessor(0.5, self.model), transformers.LogitNormalization()] |
|
) |
|
output = generate(self.model, **generate_kwargs).tolist() |
|
paragraphs = [self.tokenizer.decode(c, skip_special_tokens=True).strip() for c in output] |
|
translation = '\n'.join(paragraphs) |
|
|
|
return translation |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
translator = Translator() |
|
|
|
en_text = "How are you feeling right now? Better?" |
|
no_text = translator(en_text, "en", "nb") |
|
|
|
print(en_text) |
|
print(no_text) |
|
``` |
|
|
|
|
|
## The NorT5 and NorBERT family |
|
|
|
The official release of a new generation of NorT5 language models described in paper [**NorBench — A Benchmark for Norwegian Language Models**](https://arxiv.org/abs/2305.03880). Plese read the paper to learn more details about the model. |
|
|
|
|
|
## Other sizes: |
|
- [NorT5 xs (32M)](https://huggingface.co/ltg/nort5-xs) |
|
- [NorT5 small (88M)](https://huggingface.co/ltg/nort5-small) |
|
- [NorT5 base (228M)](https://huggingface.co/ltg/nort5-base) |
|
- [NorT5 large (808M)](https://huggingface.co/ltg/nort5-large) |
|
|
|
|
|
## Encoder-only NorBERT siblings: |
|
- [NorBERT 3 xs (15M)](https://huggingface.co/ltg/norbert3-xs) |
|
- [NorBERT 3 small (40M)](https://huggingface.co/ltg/norbert3-small) |
|
- [NorBERT 3 base (123M)](https://huggingface.co/ltg/norbert3-base) |
|
- [NorBERT 3 large (323M)](https://huggingface.co/ltg/norbert3-large) |
|
|
|
|
|
## Cite us |
|
|
|
```bibtex |
|
@inproceedings{samuel-etal-2023-norbench, |
|
title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models", |
|
author = "Samuel, David and |
|
Kutuzov, Andrey and |
|
Touileb, Samia and |
|
Velldal, Erik and |
|
{\O}vrelid, Lilja and |
|
R{\o}nningstad, Egil and |
|
Sigdel, Elina and |
|
Palatkina, Anna", |
|
booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)", |
|
month = may, |
|
year = "2023", |
|
address = "T{\'o}rshavn, Faroe Islands", |
|
publisher = "University of Tartu Library", |
|
url = "https://aclanthology.org/2023.nodalida-1.61", |
|
pages = "618--633", |
|
abstract = "We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench.", |
|
} |
|
|
|
``` |