metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- ravnursson_asr
metrics:
- wer
model-index:
- name: whisper-tiny-fo
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ravnursson_asr
type: ravnursson_asr
config: ravnursson_asr
split: None
args: ravnursson_asr
metrics:
- name: Wer
type: wer
value: 97.39999999999999
whisper-tiny-fo
This model is a fine-tuned version of openai/whisper-tiny on the ravnursson_asr dataset. It achieves the following results on the evaluation set:
- Loss: 2.3908
- Wer: 97.4000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 1.43 | 10 | 3.7140 | 118.4000 |
No log | 2.86 | 20 | 2.6041 | 100.2 |
2.8026 | 4.29 | 30 | 2.4362 | 97.6 |
2.8026 | 5.71 | 40 | 2.3908 | 97.4000 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.1