berto-subj / README.md
lulygavri's picture
Training in progress epoch 1
2717500
metadata
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: lulygavri/berto-subj
    results: []

lulygavri/berto-subj

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2648
  • Validation Loss: 0.2302
  • Train Accuracy: 0.8400
  • Train Precision: [0.9935821 0.39460253]
  • Train Precision W: 0.9301
  • Train Recall: [0.82643237 0.95494063]
  • Train Recall W: 0.8400
  • Train F1: [0.90233174 0.55844377]
  • Train F1 W: 0.8659
  • Epoch: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18106, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Accuracy Train Precision Train Precision W Train Recall Train Recall W Train F1 Train F1 W Epoch
0.2648 0.2302 0.8400 [0.9935821 0.39460253] 0.9301 [0.82643237 0.95494063] 0.8400 [0.90233174 0.55844377] 0.8659 1

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.15.0
  • Datasets 2.16.1
  • Tokenizers 0.15.1