sub2-trans / README.md
lulygavri's picture
Training in progress epoch 5
0323426
---
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
- generated_from_keras_callback
model-index:
- name: lulygavri/sub2-trans
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# lulygavri/sub2-trans
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0341
- Validation Loss: 0.0805
- Train Accuracy: 0.9762
- Train Precision: [0.96558916 0.99786325]
- Train Precision W: 0.9769
- Train Recall: [0.99892125 0.934 ]
- Train Recall W: 0.9762
- Train F1: [0.98197243 0.96487603]
- Train F1 W: 0.9760
- Epoch: 5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3436, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch |
|:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:-----------------------:|:--------------:|:-----------------------:|:----------:|:-----:|
| 0.2010 | 0.7379 | 0.7400 | [0.71450617 0.99236641] | 0.8119 | [0.99892125 0.26 ] | 0.7400 | [0.83310841 0.41204437] | 0.6856 | 1 |
| 0.1127 | 0.4136 | 0.7982 | [0.76339654 0.9953271 ] | 0.8447 | [0.99892125 0.426 ] | 0.7982 | [0.86542056 0.59663866] | 0.7712 | 2 |
| 0.0818 | 0.1851 | 0.9411 | [0.91691395 1. ] | 0.9460 | [1. 0.832] | 0.9411 | [0.95665635 0.90829694] | 0.9397 | 3 |
| 0.0511 | 0.1053 | 0.9671 | [0.9526749 0.9978022] | 0.9685 | [0.99892125 0.908 ] | 0.9671 | [0.97525013 0.95078534] | 0.9667 | 4 |
| 0.0341 | 0.0805 | 0.9762 | [0.96558916 0.99786325] | 0.9769 | [0.99892125 0.934 ] | 0.9762 | [0.98197243 0.96487603] | 0.9760 | 5 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2