Model Descripton

Fine tunes a cross encoder on the Amazon ESCI dataset.

Usage

Transformers

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch import no_grad

model_name = "lv12/esci-ms-marco-MiniLM-L-12-v2"

queries = [
    "adidas shoes",
    "adidas shoes",
    "girls sandals",
    "backpacks",
    "shoes", 
    "mustard sleeveless gown"
]
documents =  [
    '{"title": "Nike Air Max", "description": "The best shoes you can get, with air cushion", "brand": "Nike", "color": "black"}',
    '{"title": "Adidas Ultraboost", "description": "The shoes that represent the world", "brand": "Adidas", "color": "white"}',
    '{"title": "Womens sandals", "description": "Sandals:  wide width 9", "brand": "Chacos", "color": "blue"}',
    '{"title": "Girls surf backpack", "description": "The best backpack in town", "brand": "Roxy", "color": "pink"}',
    '{"title": "Fresh watermelon", "description": "The best fruit in town, all you can eat", "brand": "Fruitsellers Inc.", "color": "green"}',
    '{"title": "Floral yellow dress with frills and lace", "description": "Brighten up your summers with a gorgeous dress", "brand": "Dressmakers Inc.", "color": "bright yellow"}'
]

model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer(
    queries,
    documents,
    padding=True,
    truncation=True,
    return_tensors="pt",
)

model.eval()
with no_grad():
    scores = model(**inputs).logits.cpu().detach().numpy()
    print(scores)

Sentence Transformers

from sentence_transformers import CrossEncoder

model_name = "lv12/esci-ms-marco-MiniLM-L-12-v2"


queries = [
    "adidas shoes",
    "adidas shoes",
    "girls sandals",
    "backpacks",
    "shoes", 
    "mustard sleeveless gown"
]
documents =  [
    '{"title": "Nike Air Max", "description": "The best shoes you can get, with air cushion", "brand": "Nike", "color": "black"}',
    '{"title": "Adidas Ultraboost", "description": "The shoes that represent the world", "brand": "Adidas", "color": "white"}',
    '{"title": "Womens sandals", "description": "Sandals:  wide width 9", "brand": "Chacos", "color": "blue"}',
    '{"title": "Girls surf backpack", "description": "The best backpack in town", "brand": "Roxy", "color": "pink"}',
    '{"title": "Fresh watermelon", "description": "The best fruit in town, all you can eat", "brand": "Fruitsellers Inc.", "color": "green"}',
    '{"title": "Floral yellow dress with frills and lace", "description": "Brighten up your summers with a gorgeous dress", "brand": "Dressmakers Inc.", "color": "bright yellow"}'
]
model = CrossEncoder(model_name, max_length=512)
scores = model.predict([(q, d) for q, d in zip(queries, documents)])
print(scores)
[ 1.057739   1.6751697  1.039221   1.5969192 -0.8867093  0.5035825 ]

Training

Trained using CrossEntropyLoss using <query, document> pairs with grade as the label.

from sentence_transformers import InputExample

train_samples = [
    InputExample(texts=["query 1", "document 1"], label=0.3),
    InputExample(texts=["query 1", "document 2"], label=0.8),
    InputExample(texts=["query 2", "document 2"], label=0.1),
]
Downloads last month
21
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lv12/esci-ms-marco-MiniLM-L-12-v2

Finetuned
(2)
this model