|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- llama2 |
|
- 100k |
|
- 7b |
|
--- |
|
|
|
Anima LLM supporting 100K input token length. It's trained based on Llama2 7B, so the license support commercial use! |
|
|
|
We carefully curated long QA training dataset from 30k to 100k length to train this model. We also made a lot of memory optimizations to make it scale to 100k tokens. |
|
|
|
|
|
## How to train/infer? |
|
|
|
#### install dependencies |
|
|
|
```bash |
|
# Please update the path of `CUDA_HOME` |
|
export CUDA_HOME=/usr/local/cuda-11.8 |
|
pip install transformers==4.31.0 |
|
pip install sentencepiece |
|
pip install ninja |
|
pip install flash-attn --no-build-isolation |
|
pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary |
|
pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/xentropy |
|
pip install evaluate |
|
pip install git+https://github.com/huggingface/[email protected] |
|
pip install wandb |
|
``` |
|
|
|
#### inference |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
base_model = "lyogavin/Anima-7B-100K" |
|
tokenizer = AutoTokenizer.from_pretrained(base_model) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
model.eval() |
|
|
|
prompt = "Where is the capital of US?" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
inputs['input_ids'] = inputs['input_ids'].cuda() |
|
inputs['attention_mask'] = inputs['attention_mask'].cuda() |
|
|
|
# Generate |
|
generate_ids = model.generate(**inputs, max_new_tokens=30, |
|
only_last_logit=True, # to save memory |
|
use_cache=False, # when run into OOM, enable this can save memory |
|
xentropy=True) |
|
output = tokenizer.batch_decode(generate_ids, |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=False)[0] |
|
|
|
``` |
|
|
|
#### Training |
|
|
|
```bash |
|
./run_longer_training.sh |
|
``` |
|
|
|
## Evaluations |
|
|
|
There's almost none evaluation dataset designed for 100k tokens. So we designed/curated some dataset for this model. We compared this model and several other public/private models. |
|
|
|
#### 1. longchat topic retrieval |
|
|
|
| Model | Accuracy | |
|
|-------------------|---------| |
|
| Claude2 | 0.9 | |
|
| together llama2 32k | 0.15 | |
|
| longchat 32k 1.5 | 0.05 | |
|
| Anima 100K | 0.5 | |
|
|
|
#### 2. longchat number retrieval |
|
|
|
| Model | Accuracy | |
|
|-------------------|---------| |
|
| Claude2 | 0.85 | |
|
| together llama2 32k | 0.2 | |
|
| longchat 32k 1.5 | 0.05 | |
|
| Anima 100K | 0.45 | |
|
|
|
#### 3. Narrative QA in zeroscore |
|
|
|
| Model | F1 | |
|
|-------------------|---------| |
|
| Claude2 | 0.6187 | |
|
| together llama2 32k | 0.3833 | |
|
| longchat 32k 1.5 | 0.2416 | |
|
| Anima 100K | 0.4919 | |
|
|
|
## Github |
|
|
|
Github repo is [here](https://github.com/lyogavin/Anima/tree/main/anima_100k) |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lyogavin__Anima-7B-100K) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 37.66 | |
|
| ARC (25-shot) | 46.59 | |
|
| HellaSwag (10-shot) | 72.28 | |
|
| MMLU (5-shot) | 33.4 | |
|
| TruthfulQA (0-shot) | 37.84 | |
|
| Winogrande (5-shot) | 67.09 | |
|
| GSM8K (5-shot) | 0.68 | |
|
| DROP (3-shot) | 5.72 | |
|
|