|
--- |
|
license: llama3 |
|
language: |
|
- en |
|
- ja |
|
metrics: |
|
- comet |
|
pipeline_tag: translation |
|
tags: |
|
- machine translation |
|
- MT |
|
- llama-3 |
|
--- |
|
|
|
# Overview |
|
This model is based on rinna's [rinna/llama-3-youko-8b], fine-tuned using LoRA on a small number of parallel sentences from English to Japanese. The model has a COMET (Unbabel/wmt22-comet-da) of 0.9011 and BLEU ("tok": "ja-mecab-0.996-IPA") of 33.1 on flores200 devtest. |
|
|
|
* **Model architecture** |
|
|
|
A 32-layer, 4096-hidden-size transformer-based language model. Refer to the [Llama 3 Model Card](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for architecture details. |
|
--- |
|
|
|
# How to use the model |
|
|
|
~~~~python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
response_template = "\n### 日本語:\n" |
|
prefix = "### 次の英語の文書を日本語に翻訳してください:\n" |
|
|
|
|
|
def create_input(text, tokenizer): |
|
text = f"{prefix}{text}{response_template}" |
|
input_ids = tokenizer.encode(text, return_tensors="pt") |
|
return input_ids |
|
|
|
|
|
model_id = "lyu/MT/output/llama3-sft-lora-16-NLLB-100k-run2/merge" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" |
|
).cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True) |
|
|
|
en = "LLMs Are Here but Not Quite There Yet" |
|
input_ids = create_input(en, tokenizer).to(model.device) |
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
num_beams=5, |
|
do_sample=False, |
|
early_stopping=True, |
|
) |
|
response = outputs[0][input_ids.shape[-1] :] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
~~~~ |
|
|
|
--- |
|
|
|
# Tokenization |
|
The model uses the original meta-llama/Meta-Llama-3-8B tokenizer. |
|
|
|
|
|
# References |
|
```bibtex |
|
@article{llama3modelcard, |
|
title={Llama 3 Model Card}, |
|
author={AI@Meta}, |
|
year={2024}, |
|
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} |
|
} |
|
@software{gpt-neox-library, |
|
title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}}, |
|
author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel}, |
|
doi = {10.5281/zenodo.5879544}, |
|
month = {8}, |
|
year = {2021}, |
|
version = {0.0.1}, |
|
url = {https://www.github.com/eleutherai/gpt-neox}, |
|
} |
|
@misc{rinna-llama-3-youko-8b, |
|
title = {rinna/llama-3-youko-8b}, |
|
author = {Mitsuda, Koh and Sawada, Kei}, |
|
url = {https://huggingface.co/rinna/llama-3-youko-8b}, |
|
} |
|
@inproceedings{sawada2024release, |
|
title = {Release of Pre-Trained Models for the {J}apanese Language}, |
|
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, |
|
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, |
|
month = {5}, |
|
year = {2024}, |
|
url = {https://arxiv.org/abs/2404.01657}, |
|
} |
|
``` |
|
--- |
|
|
|
# License |