Tb_Dataset

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4037
  • Accuracy: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0996 0.3067 100 1.0429 0.5625
0.0481 0.6135 200 0.5665 0.8125
0.0391 0.9202 300 1.0037 0.6875
0.0711 1.2270 400 0.5200 0.875
0.0258 1.5337 500 0.3818 0.9375
0.0547 1.8405 600 0.3415 0.9375
0.0029 2.1472 700 0.0637 0.9375
0.0543 2.4540 800 0.7362 0.8125
0.0265 2.7607 900 1.0917 0.75
0.0017 3.0675 1000 0.0030 1.0
0.0054 3.3742 1100 0.0364 1.0
0.0234 3.6810 1200 0.2310 0.875
0.0076 3.9877 1300 0.4037 0.875

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for m-faraz-ali/Vit_Classification_Pneumonia

Finetuned
(1800)
this model

Evaluation results