m3 commited on
Commit
7149bf9
·
1 Parent(s): 70ebb68

chore: add dummpy model

Browse files
Files changed (3) hide show
  1. .gitignore +1 -0
  2. model.onnx +0 -3
  3. src/{empty.py → dummy.py} +30 -39
.gitignore CHANGED
@@ -1 +1,2 @@
1
  ./custom_model
 
 
1
  ./custom_model
2
+ .idea
model.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b3a7a3939f0d8c3ba7d20dd08fc5caf88da2477a64a4d083bbff7bac346935b1
3
- size 251
 
 
 
 
src/{empty.py → dummy.py} RENAMED
@@ -1,51 +1,45 @@
1
  from transformers import PretrainedConfig, PreTrainedModel, AutoConfig, AutoModel
2
  from transformers.pipelines import PIPELINE_REGISTRY
3
  from huggingface_hub import hf_hub_download
4
- import onnxruntime as ort
5
-
6
  import torch
7
  import os
8
 
9
-
10
- # 1. register AutoConfig
11
- class ONNXBaseConfig(PretrainedConfig):
12
- model_type = 'onnx-base'
13
-
14
-
15
- AutoConfig.register('onnx-base', ONNXBaseConfig)
16
-
17
- # 2. register AutoModel
18
- class ONNXBaseModel(PreTrainedModel):
19
- config_class = ONNXBaseConfig
20
-
21
- def __init__(self, config):
 
 
 
22
  super().__init__(config)
23
 
24
  def forward(self, input=None, **kwargs):
25
  return {}
26
 
27
- @classmethod
28
- def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
29
- config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
30
- return cls(config)
31
-
32
  @property
33
  def device(self):
34
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
35
  return torch.device(device)
36
 
37
-
38
- AutoModel.register(ONNXBaseConfig, ONNXBaseModel)
39
-
40
  # 2. register Pipeline
41
  from transformers.pipelines import Pipeline
42
 
43
- class ONNXBasePipeline(Pipeline):
44
  def __init__(self, model, **kwargs):
45
  super().__init__(model=model, **kwargs)
46
  self.device_id = kwargs['device']
47
- model_path = hf_hub_download(repo_id='m3/onnx-base', filename='model.onnx', local_files_only=True)
48
- self.session = ort.InferenceSession(model_path)
 
49
 
50
  def __call__(
51
  self,
@@ -62,30 +56,27 @@ class ONNXBasePipeline(Pipeline):
62
  return {'input': input}
63
 
64
  def _forward(self, model_input):
65
- input = model_input['input']['inputs']
66
- outs = self.session.run(None, {'input': input})
67
- return input
 
 
68
 
69
  def postprocess(self, model_outputs):
70
  return model_outputs
71
 
72
-
73
  PIPELINE_REGISTRY.register_pipeline(
74
- task='onnx-base',
75
- pipeline_class=ONNXBasePipeline,
76
- pt_model=ONNXBaseModel,
77
- default={"pt": ("m3/onnx-base", "a5e4e8f")},
78
  )
79
 
80
  # 4. show how to use
81
  from transformers import pipeline
82
 
83
- cfg = ONNXBaseConfig(model_path='model.onnx',
84
- id2label={0: 'label_0', 1: 'label_1'},
85
- label2id={0: 'label_1', 1: 'label_0'})
86
-
87
  pipe = pipeline(
88
- task='onnx-base',
 
89
  batch_size=10,
90
  device='cuda',
91
  )
 
1
  from transformers import PretrainedConfig, PreTrainedModel, AutoConfig, AutoModel
2
  from transformers.pipelines import PIPELINE_REGISTRY
3
  from huggingface_hub import hf_hub_download
 
 
4
  import torch
5
  import os
6
 
7
+ # 1. create auto config
8
+ class DummyConfig(PretrainedConfig):
9
+ model_type = 'dummy'
10
+
11
+ # 2. create model
12
+ class DummyModel(PreTrainedModel):
13
+ config_class = DummyConfig
14
+ def __init__(self, model: str, model_path: str):
15
+ is_local = os.path.isdir(model)
16
+ if is_local:
17
+ base_path = model
18
+ model_path = os.path.join(base_path, model_path)
19
+ else:
20
+ model_path = hf_hub_download(repo_id=model, filename=model_path)
21
+ base_path = os.path.dirname(model_path)
22
+ config = DummyConfig(base_path=base_path, model_path=model_path)
23
  super().__init__(config)
24
 
25
  def forward(self, input=None, **kwargs):
26
  return {}
27
 
 
 
 
 
 
28
  @property
29
  def device(self):
30
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
31
  return torch.device(device)
32
 
 
 
 
33
  # 2. register Pipeline
34
  from transformers.pipelines import Pipeline
35
 
36
+ class DummyPipeline(Pipeline):
37
  def __init__(self, model, **kwargs):
38
  super().__init__(model=model, **kwargs)
39
  self.device_id = kwargs['device']
40
+ self.model_path = self.model.config.model_path
41
+ self.base_path = self.model.config.base_path
42
+
43
 
44
  def __call__(
45
  self,
 
56
  return {'input': input}
57
 
58
  def _forward(self, model_input):
59
+ return {'data': 'dummy',
60
+ 'device_id': self.device_id,
61
+ 'base_path': self.base_path,
62
+ 'model_path': self.model_path
63
+ }
64
 
65
  def postprocess(self, model_outputs):
66
  return model_outputs
67
 
 
68
  PIPELINE_REGISTRY.register_pipeline(
69
+ task='dummy-task',
70
+ pipeline_class=DummyPipeline,
71
+ pt_model=DummyModel,
 
72
  )
73
 
74
  # 4. show how to use
75
  from transformers import pipeline
76
 
 
 
 
 
77
  pipe = pipeline(
78
+ model=DummyModel("Ultralytics/YOLOv8", 'yolov8m.pt'),
79
+ task='dummy-task',
80
  batch_size=10,
81
  device='cuda',
82
  )