|
--- |
|
base_model: csebuetnlp/banglabert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- pos_tag_100k |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bengali_pos_v1 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: pos_tag_100k |
|
type: pos_tag_100k |
|
config: conll2003 |
|
split: validation |
|
args: conll2003 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7540530477530749 |
|
- name: Recall |
|
type: recall |
|
value: 0.7567416940049906 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7553949784896273 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8181902034079325 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bengali_pos_v1 |
|
|
|
This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the pos_tag_100k dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6322 |
|
- Precision: 0.7541 |
|
- Recall: 0.7567 |
|
- F1: 0.7554 |
|
- Accuracy: 0.8182 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.7003 | 1.0 | 20000 | 0.6762 | 0.7281 | 0.7339 | 0.7310 | 0.8000 | |
|
| 0.6097 | 2.0 | 40000 | 0.6277 | 0.7481 | 0.7481 | 0.7481 | 0.8135 | |
|
| 0.5062 | 3.0 | 60000 | 0.6322 | 0.7541 | 0.7567 | 0.7554 | 0.8182 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|