metadata
library_name: transformers
license: apache-2.0
WestLake-7B-v2-laser-truthy-dpo
Process
- Trained cognitivecomputations/WestLake-7B-v2-laser on jondurbin/truthy-dpo-v0.1
- Completed 2 epochs
- 2e-5 learning rate
Code Example
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "macadeliccc/WestLake-7B-v2-laser-truthy-dpo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "Create an idea for a TV show and write a short pilot script"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=4096)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Evaluations
Evaluated the GGUF for usability reasons. EQ-Bench uses Ooba for inference.
----Benchmark Complete---- 2024-01-31 14:38:14 Time taken: 18.9 mins Prompt Format: ChatML Model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo-GGUF Score (v2): 75.15 Parseable: 171.0 --------------- Batch completed Time taken: 19.0 mins ---------------
GGUF
GGUF versions are available here