File size: 5,374 Bytes
354c18c
947c20e
 
 
5ba4356
 
 
 
 
354c18c
 
947c20e
354c18c
947c20e
354c18c
947c20e
354c18c
947c20e
 
354c18c
947c20e
354c18c
947c20e
354c18c
947c20e
354c18c
947c20e
13ee8af
947c20e
 
 
354c18c
947c20e
354c18c
2ec216a
 
947c20e
354c18c
947c20e
 
354c18c
1e92226
 
354c18c
947c20e
 
354c18c
947c20e
 
 
354c18c
 
947c20e
354c18c
 
947c20e
 
 
354c18c
1e92226
 
354c18c
947c20e
 
354c18c
947c20e
 
 
354c18c
 
947c20e
354c18c
947c20e
354c18c
947c20e
 
 
354c18c
1e92226
 
354c18c
947c20e
 
354c18c
947c20e
 
 
354c18c
947c20e
354c18c
947c20e
 
 
354c18c
1e92226
 
354c18c
947c20e
 
354c18c
947c20e
 
 
354c18c
947c20e
354c18c
947c20e
354c18c
947c20e
 
 
354c18c
947c20e
354c18c
1e92226
 
354c18c
947c20e
 
354c18c
947c20e
 
 
354c18c
947c20e
354c18c
947c20e
 
 
354c18c
947c20e
354c18c
1e92226
 
354c18c
947c20e
 
354c18c
947c20e
 
 
354c18c
 
947c20e
354c18c
947c20e
354c18c
947c20e
354c18c
947c20e
 
 
 
 
 
 
354c18c
947c20e
354c18c
947c20e
 
 
 
354c18c
947c20e
354c18c
947c20e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
datasets:
- Thermostatic/flowers
- jondurbin/truthy-dpo-v0.1
- Intel/orca_dpo_pairs
- glaiveai/glaive-function-calling-v2
---

# Gemma Orchid 7b

<div align="center">  

![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/7pqiroePJW0WWm6JxwBoO.webp)

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
</div>

This model is the second checkpoint of a future project. Its capable of function calling as well as having a strong base in communicational skills.

This model has been finetuned on roughly 80k samples so far.

# Training

+ Time to complete: ~20 hours
+ Datasets: Thermostatic/flowers, Intel/orca_dpo_pairs, jondurbin/truthy-dpo-v0.1, glaiveai/glaive_function_calling_v2
+ Evaluation loss: 0.69
+ Method: LoRa
+ Prompt Format: ChatML

Thermostatic/flowers is a blend of open source model generations formatted in ShareGPT. It also includes all of capybara. 

This model has been exposed to a wide variety of data. [macadeliccc/gemma-function-calling-7b](https://huggingface.co/macadeliccc/gemma-function-calling-7b) is suitable to finetune further with the dataset of your choosing. 

#### Running the model on a CPU

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```


#### Running the model on a single / multi GPU


```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", device_map="auto")

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```


#### Running the model on a GPU using different precisions

* _Using `torch.float16`_

```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", device_map="auto", torch_dtype=torch.float16)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```

* _Using `torch.bfloat16`_

```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", device_map="auto", torch_dtype=torch.bfloat16)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```

#### Quantized Versions through `bitsandbytes`

* _Using 8-bit precision (int8)_

```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_8bit=True)

tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", quantization_config=quantization_config)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```

* _Using 4-bit precision_

```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_4bit=True)

tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", quantization_config=quantization_config)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```


#### Other optimizations

* _Flash Attention 2_

First make sure to install `flash-attn` in your environment `pip install flash-attn`

```diff
model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
+   attn_implementation="flash_attention_2"
).to(0)
```

### Inputs and outputs

*   **Input:** Text string, such as a question, a prompt, or a document to be
    summarized.
*   **Output:** Generated English-language text in response to the input, such
    as an answer to a question, or a summary of a document.

## Evaluations 

In progress